Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DK
Xem chi tiết
MH
26 tháng 5 2019 lúc 22:35

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Bình luận (0)
MH
26 tháng 5 2019 lúc 22:35

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Bình luận (0)
MH
26 tháng 5 2019 lúc 22:35

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Bình luận (0)
LN
Xem chi tiết
ND
8 tháng 9 2019 lúc 21:03

toi ko bit lam chi biet lam anh thui

Bình luận (0)
LN
8 tháng 9 2019 lúc 21:03

Mk cũng khá tốt về Anh nha bạn

Bình luận (0)
ND
8 tháng 9 2019 lúc 21:09

ban biet lam cau hoi minh vua gui ko

Bình luận (0)
H24
Xem chi tiết
NB
11 tháng 7 2018 lúc 9:38

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

Bình luận (0)
NB
Xem chi tiết
TH
Xem chi tiết
TP
31 tháng 7 2018 lúc 14:43

a)

Nếu n lẻ thì (n+1) chẵn => (n+1)x(n+8) chia hết cho 2

Nếu n chẵn thì (n+8) chẵn => (n+1)x(n+8) chia hết cho 2

Nếu n = 0 => 1 x 8 = 8 chia hết cho 2

b)

n^2 + n = n x ( n + 1 )

mà n và n+1 là 2 số liên tiếp => có một số chẵn => chia hết cho 2

Bình luận (0)
KT
31 tháng 7 2018 lúc 14:45

a)  \(A=\left(n+1\right)\left(n+8\right)\)

Nếu: \(n=2k\)thì:  \(A\)\(⋮\)\(2\)

Nếu:  \(n=2k+1\)thì:  \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=>  \(A\)\(⋮\)\(2\)

Vậy A chia hết cho 2

b)  \(B=n^2+n=n\left(n+1\right)\)

Nếu:  \(n=2k\)thì:  \(B\)\(⋮\)\(2\)

Nếu  \(n=2k+1\)thì:  \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=>  \(B\)\(⋮\)\(2\)

Vậy B chia hết cho 2

Bình luận (0)
OO
Xem chi tiết
TT
Xem chi tiết
LT
2 tháng 12 2017 lúc 16:30

1) 

 n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2) 
số chia hết cho 6 là số chia hết cho 2 và 3 
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n 
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n 
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

2)

Bạn làm tương tự nha! 

Bình luận (0)
TT
2 tháng 12 2017 lúc 17:11

thank

Bình luận (0)
TT
Xem chi tiết
NN
19 tháng 1 2016 lúc 23:34

a) 2n chia hết cho n + 5

=> 2n + 10 - 10 chia hết cho n + 5

=> 2(n + 5) - 10 chia hết cho n + 5

Vì 2(n + 5) chia hết cho n + 5 => -10 chia hết cho n + 5

=> n + 5 thuộc Ư(-10)

=> n + 5 thuộc {-10; -5; -2 -1; 1; 2; 5; 10}

=> n thuộc {-15; -10; -7; -6; -4; -3; 0; 5}

b) 3n + 4 chia hết cho n + 1

=> 3n + 3 + 1 chia hết cho n + 1

=> 3(n + 1) + 1 chia hết cho n + 1

Vì 3(n + 1) chia hết cho n + 1 => 1 chia hết cho n + 1

=> n + 1 thuộc Ư(1)

=> n + 1 thuộc {-1; 1}

=> n thuộc {-2; 0}

Bình luận (0)
WH
19 tháng 1 2016 lúc 23:35

20 : 5 + 5

36 + 4 : 4 + 1

Bình luận (0)
PT
Xem chi tiết