CMR: 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61<1/2
cmr
1/3+1/31+1/35+1/37+1/47+1/53+1/61<1/2
1/3+1/31+1/35+1/37+1/47+1/53+1/61 < 1 / 3 + 3 / 31 + 3 / 47 < 1 / 3 + 3 / 30 + 3 / 45 =
1 / 3 + 1 / 10 + 1 / 15 = 1 / 3 + (1 / 30) * (3 + 2) = 1 / 3 + (1 / 30) * 5 = 1 / 3 + 1 / 6 =
(1 / 6) * (2 + 1) = (1 / 6) * 3 = 1 / 2
CMR
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
CMR
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
1\3+1\31 + 1\1\35 +1\37 + 1\47 + 1\53 + 1\61< 1\2
Đặt \(A=\dfrac{1}{3}+\dfrac{1}{31}+\dfrac{1}{35}+\dfrac{1}{37}+\dfrac{1}{47}+\dfrac{1}{53}+\dfrac{1}{61}\)
\(A< \left(\dfrac{1}{30}+\dfrac{1}{30}+\dfrac{1}{30}\right)+\left(\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}\right)\)
\(A< \dfrac{1}{3}+\dfrac{3}{30}+\dfrac{4}{60}\)
\(A< \dfrac{10}{30}+\dfrac{3}{30}+\dfrac{2}{30}\)
\(A< \dfrac{15}{30}=\dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\) ( đpcm ).
CMR
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
Vì mấy cái kia cộng lại sẽ bằng 0,477..
1/2=0,5 nên tổng kia sẽ nhỏ hơn 1/2
so sanh : 1/3+1/31+1/35+1/37+1/47+1/53+1/61 va 1/2
Ta co : \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}
CMR:
\(S=\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}<\frac{1}{2}\)
sách nâng cao và phát triển toán tập 2 lớp 6 có đó bạn , bài 472 trang 34
CMR :
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
ai nhanh mk tk
Có : 1/31 < 1/30 ; 1/35 < 1/30 ; 1/37 < 1/30
1/47 < 1/45 ; 1/53 < 1/45 ; 1/61 < 1/45
=> 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/3 + 1/30 + 1/30 + 1/30 + 1/45 + 1/45 + 1/45 = 1/2
=> ĐPCM
Tk mk nha
Gọi dãy số cần chứng minh là A
Ta có : \(A< \) \(\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)\)
\(A< \frac{1}{3}+\frac{3}{30}+\frac{4}{60}\)
\(A< \frac{10}{30}+\frac{3}{30}+\frac{2}{30}\)
\(A< \frac{13}{30}+\frac{2}{30}\)
\(A< \frac{15}{30}=\frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\RightarrowĐPCM\)
chứng minh rằng: 1/3+1/31+1/35+1/37+1/47+1/53+1/61<1/2