Những câu hỏi liên quan
NT
Xem chi tiết
H24
Xem chi tiết
PT
31 tháng 10 2018 lúc 11:02

a)tr hp 1 : n : số lẻ

n2 : số lẻ

n2+n : số chẵn

n2+n+1 : số lẻ

tr hp 2 : n : số chẵn

n2 : số chẵn

n2+n : số chẵn

n2+n+1 : số lẻ

=> ko chia hết cho 2

Bình luận (0)
DT
Xem chi tiết
TN
Xem chi tiết
PB
5 tháng 10 2015 lúc 21:13

a) Ta chia ra 2 trường hợp

TH1 : n là số chẵn

=>n^2 sẻ là số lẻ

Do n và n^2 đều là số lẻ, mà số lẻ + số lẻ sẻ có kết quả là số lẻ

=>n^2 +n là số chẵn 

Ta có số chẵn + số lẻ = số lẻ

=> n^2 + n+1 là số lẻ

Do số lẻ ko chia hết cho 2 nên n^2+n+1 ko chia hết cho 2

TH1 ko chia hết cho 2 

TH2: n là số chẵn 

=>n^2 là số chẵn 

Do n là số chẵn mà chẵn + chẵn = chẵn

=> n^2 + n là số chẵn 

Do số chẵn + lẻ = lẻ

=> n^2 +1 là số lẻ nên ko chia hết cho 2

Vậy n^2 + n + 1 ko chia hết cho 2

câu b tượng  tự

Bình luận (0)
H24
Xem chi tiết
AL
11 tháng 8 2016 lúc 21:17

\(a,A=n^2+n+1\)

\(=n\left(n+1\right)+1\)

vì n(n+1) luôn chia hết cho 2 với n thuộc N nên A không chia hết cho 2

Bình luận (0)
LG
31 tháng 12 2018 lúc 20:51

b,

giả sử n chia hết cho 5 
=>n có dạng 5k 
=>n^2+n+1=25k^2+5k+1=5k(5k+1)+1 
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5 
=>25k^2+5k+1 ko chia hết cho 5 (đpcm)

Bình luận (0)
VN
Xem chi tiết
TM
19 tháng 7 2016 lúc 10:10

\(A=n^2+n+1=n\left(n+1\right)+1\)

a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn 

=>n(n+1) là số chẵn

=>n(n+1)+1 là số lẻ

=>A ko chia hết cho 2 (đpcm)

b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9

=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0

=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0

Hay n(n+1) có thể có tận cùng là: 0;2;6

=>n(n+1)+1 có thể có tận cùng là 1;3;7

=>A ko chia hết cho 5 (đpcm)

Bình luận (0)
PE
Xem chi tiết
H24
17 tháng 10 2015 lúc 21:23

a,A=n(n+1)+1

mà n(n+1) là tích 2 số tự nhiên liên tiếp => chia hết cho 2 => + them 1 vào thì lé ko chia hết cho 2

b, A ko chia hết cho 5 vì :

n(n+1) khi chia 5 chỉ dư:0,2,1 => cộng thêm 1 cũng ko chia hết cho 5

Bình luận (0)
ST
Xem chi tiết
DL
8 tháng 12 2015 lúc 21:35

a)Nếu n=2k(kEN)

thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)

Nếu n=2k+1(kEN)

thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)

Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2

b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n

Nếu n=2k(kEN )

thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)

Nếu n=2k+1(kEN)

thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................

tương tự, n=3k;3k+1;3k+2

mỏi tay chết đi được, mấy con số còn bay đi lung tung

Bình luận (0)
PE
Xem chi tiết