Những câu hỏi liên quan
LT
Xem chi tiết
NK
Xem chi tiết
NC
6 tháng 2 2020 lúc 10:03

Với số tự nhiên n, ta có:

\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}=\frac{n\left(n+1\right)}{2}+\frac{n\left(n+1\right)+2\left(n+1\right)}{2}\)

\(=\frac{n\left(n+1\right)}{2}+\frac{n\left(n+1\right)}{2}+n+1\)

\(=n\left(n+1\right)+n+1=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
HH
11 tháng 7 2016 lúc 12:07
Gửi éo đc
Bình luận (0)
HH
11 tháng 7 2016 lúc 12:11

Gọi 3 STN liên tiếp là a;a+1;a+2 Ta có tổng là : a+a+1+a+2=3a+3=3(a+1) số này chia hết cho 3. Tương Tự Gọi 4 STN liên tiếp là a;a+1;a+2;a+3 Ta có: 4a+4=4(a+1) chia hết cho 4

Bình luận (0)
HN
11 tháng 7 2016 lúc 12:16

\(B=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+\left(2n^2+2n\right)+1=\left[n\left(n+1\right)\right]^2+2n\left(n+1\right)+1\)\(=\left[n\left(n+1\right)+1\right]^2\) là một số chính phương.

Bình luận (0)
LT
Xem chi tiết
HN
11 tháng 7 2016 lúc 12:51

Ta có : \(B=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+\left(2n^2+2n\right)+1=n^2\left(n+1\right)^2+2n\left(n+1\right)+1\)

\(=\left[n\left(n+1\right)+1\right]^2\) là một số chính phương.

Bạn thêm điều kiện n là số tự nhiên nhé ^^

Bình luận (1)
H24
Xem chi tiết
DL
Xem chi tiết
PH
Xem chi tiết