Những câu hỏi liên quan
DL
Xem chi tiết
HT
Xem chi tiết
LN
Xem chi tiết
TK
10 tháng 7 2019 lúc 20:07

Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé

Câu 2

\(\frac{3}{2}x+\frac{6}{x}\ge6\)\(\frac{1}{2}y+\frac{8}{y}\ge4\)

\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)

Cộng các bĐT trên

=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)

MinP=19 khi x=2;y=4

Bình luận (0)
NA
Xem chi tiết
LC
Xem chi tiết
DG
Xem chi tiết
NL
28 tháng 8 2020 lúc 9:05

Bài làm:

Ta có: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+2+\frac{1}{x^2y^2}\)

\(=\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}+2\)

Mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow x^2y^2\le\frac{1}{16}\)

Thay vào ta tính được:

\(M\ge2\sqrt{x^2y^2\cdot\frac{1}{256x^2y^2}}+\frac{255}{256\cdot\frac{1}{16}}+2\)

\(=\frac{1}{8}+\frac{255}{16}+2=\frac{289}{16}\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

Vậy \(Min_M=\frac{289}{16}\Leftrightarrow x=y=\frac{1}{2}\)

Đánh máy xong hết lại bấm hủy-.-

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TD
Xem chi tiết
TB
6 tháng 11 2017 lúc 22:05

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

Bình luận (0)
TM
6 tháng 11 2017 lúc 21:39

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

Bình luận (0)
DN
Xem chi tiết
KS
30 tháng 9 2019 lúc 11:31

Mình ko chắc lắm :

Áp dụng BĐT AM - GM ta có :

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=\frac{x^2y^2+1}{y^2}.\frac{x^2y^2+1}{x^2}=\frac{x^4y^4+2x^2y^2+1}{x^2y^2}\)

\(=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)

\(\ge2\sqrt{x^2y^2.\frac{1}{256x^2y^2}}+\frac{255}{256.\left(xy\right)^2}+2\)

\(\ge2.\frac{1}{16}+\frac{255}{256.\left(\frac{\left(x+y\right)^2}{4}\right)^2}+2\)

\(=\frac{1}{8}+\frac{255}{256.\left(\frac{1}{4}\right)^2}+2=\frac{289}{16}\)

Khi \(x=y=\frac{1}{2}\)

Chúc bạn học tốt !!!

Bình luận (0)