Cho P = 1/2-1/3+1/4-1/5+....+1/48+1/49.
CMR 0,2<A<,0,4
Cho P = 1/2-1/3=1/4-1/5+....+1/48=1/49.
CMR 0,2<A<,0,4
Đề hơi sai chút xíu bn ạ!
Cmr 7/12 < A< 5/6
Biết A=1-1/2+1/3-1/4+...+1/47-1/48+1/49-1/50
Cmr 7/12 < A< 5/6
Biết A=1-1/2+1/3-1/4+...+1/47-1/48+1/49-1/50
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{47}-\frac{1}{48}+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+....+\frac{1}{25}\right)\)\(=\frac{1}{26}+...+\frac{1}{50}\)
Cmr 7/12 < A< 5/6
Biết A=1-1/2+1/3-1/4+...+1/47-1/48+1/49-1/50
Cho \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}\)
CMR : \(\frac{1}{5}< A< \frac{2}{5}\)
=1−12 +13 −14 +15 −16 +...+149 −150. A =(1+13 +15 +...+149 )−(12 +14 +16 +...+150 ).
A =(1+12 +13 +14 +15 +16 +...+149 ...
.........
cho p=1/2+1/3+1/4+…+1/47+1/48+1/49+1/50
q=1/49+2/48+3/49+…47/3+48/2+49/1
tính p/q
Tính S/P biết:
S = 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 +49/1
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50
Cho S=1/2+1/3+1/4+....+1/48+1/49+1/5000 và P=1/49+2/48+3/47+....+48/2+49/2.Hãy tính S/P
Cho P= 1/2+1/3+1/4+...+1/48+1/49 và Q=1/49+2/48+...+48/2+49/1
hãy tính P/Q
Xin lỗi! Cho mình hỏi cái:
Đề bạn viết có đúng hay không, nếu đúng thì mình ko giải được, còn nếu đề là thế này thì mình giải được:
Cho P = 1/2 + 1/3 + ... + 1/48 + 1/49 + 1/50 và Q = 1/49 + 2/48 + ... + 48/2 + 49/2
Tính P/Q
Cách làm như sau:
Ta có:
Q = 1/49 + 2/48 + ... + 48/2 + 49/1
= 50 - 49/49 + 50 - 48/48 + ... + 50 - 2/2 + 50 - 1/1
= 50/49 - 1 + 50/48 - 1 + ... + 50/2 - 1 + 50/1 - 1
= 50/49 + 50/48 + ... + 50/2 + 50/1 - (1 + 1 + ... + 1 + 1) (49 số hạng 1)
= 50/49 + 50/48 + ... + 50/2 + 50 - 49
= 50/2 + ... + 50/48 + 50/49 + 1
= 50/2 + ... + 50/48 + 50/49 + 50/50
= 50.(1/2 + 1/3 + ... + 1/48 + 1/49 + 1/50)
=> P/Q = (1/2 + 1/3 + ... + 1/48 + 1/49 + 1/50) / 50.(1/2 + 1/3 + ... + 1/48 + 1/49 + 1/50) = 1/50
Vậy P/Q = 1/50