So sánh\(\sqrt{29}+\sqrt{3}+\sqrt{2015}\) với 50
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
So sánh \(\sqrt{29}+\sqrt{3}+\sqrt{2003}\)Với 50
\(\sqrt{29}>\sqrt{25}\)= 5
\(\sqrt{3}>1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
Cộng từng vế của ba bất đẳng thức ta được
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}\) > 1+5 +44 = 50
\(\sqrt{29}>\sqrt{25}=5\)
\(\sqrt{3}>\sqrt{1}=1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
\(=>\sqrt{29}+\sqrt{3}+\sqrt{2003}>5+1+44=50\)
Cho M=\(\frac{\sqrt{2}-\sqrt{1}}{1+1}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+\frac{\sqrt{4}-\sqrt{3}}{3+4}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}\)
Hãy so sánh M với 1/2
so sánh \(\sqrt{2015}-\sqrt{2014}\) và \(\sqrt{2016}-\sqrt{2015}\)
Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{2015-2014}{\sqrt{2015}+\sqrt{2014}}>\dfrac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\sqrt{2016}-\sqrt{2015}\)
Ta có: √2015−√2014=2015−2014√2015+√2014>2016−2015√2016+√2015=√2016−√2015
Cho M = \(\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}.\)
Hãy so sánh M với 1/2
CHỈ CHO MÌNH CÁCH LÀM VỚI
LÀM ĐÚNG MÌNH TICK CHO.
1212
tk nhe@@@@@@@@@@@!!
aitk minh minh tk lai
bye
Cho M = \(\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}.\)
Hãy so sánh M với 1/2
CHỈ CHO MÌNH CÁCH LÀM VỚI
LÀM ĐÚNG MÌNH TICK CHO.
Cho M = \(\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}.\)
Hãy so sánh M với 1/2
CHỈ CHO MÌNH CÁCH LÀM VỚI
LÀM ĐÚNG MÌNH TICK CHO.
Cho M = \(\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}.\)
Hãy so sánh M với 1/2
CHỈ CHO MÌNH CÁCH LÀM VỚI
LÀM ĐÚNG MÌNH TICK CHO.
Ta so sánh từng số hạng :
\(\frac{\sqrt{2}-\sqrt{1}}{1+2}=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\left(1+2\right)\left(\sqrt{2}+\sqrt{1}\right)}=\frac{1}{\left(1+2\right)\left(\sqrt{2}+\sqrt{1}\right)}< \frac{1}{2}\)
\(\frac{\sqrt{3}-\sqrt{2}}{2+3}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(2+3\right)\left(\sqrt{3}+\sqrt{2}\right)}=\frac{1}{\left(2+3\right)\left(\sqrt{2}+\sqrt{3}\right)}< \frac{1}{2}\)
..........................................................................................................................................................................................
\(\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}=\frac{\left(\sqrt{2015}-\sqrt{2014}\right)\left(\sqrt{2015}+\sqrt{2014}\right)}{\left(2014+2015\right)\left(\sqrt{2015}+\sqrt{2014}\right)}=\frac{1}{\left(2014+2015\right)\left(\sqrt{2015}+\sqrt{2015}\right)}< \frac{1}{2}\)
Vì mỗi số hạng của M đều nhỏ hơn 1/2 nên M < 1/2
Bài này mình làm chưa đúng nhé :) Để lát mình làm cách khác.
Cho M = \(\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}.\)
Hãy so sánh M với 1/2
CHỈ CHO MÌNH CÁCH LÀM VỚI
LÀM ĐÚNG MÌNH TICK CHO.
Cho M = \(\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}.\)
Hãy so sánh M với 1/2
CHỈ CHO MÌNH CÁCH LÀM VỚI
LÀM ĐÚNG MÌNH TICK CHO.