Những câu hỏi liên quan
DA
Xem chi tiết
HT
26 tháng 9 2016 lúc 12:34

ta có 91991=91990x9=(92)995x9=81995x9

vì 81 lũy thừa bao nhiêu đều có tận cùng là 1

vậy 91991có chữ số tận cùng là 9

Bình luận (0)
VH
26 tháng 9 2016 lúc 12:36

Đ/số : chữ số tận cùng là 1

Bình luận (0)
NC
Xem chi tiết
NT
7 tháng 8 2019 lúc 15:48

Ta có : 2 ^ 4 = 16 có tận cùng là 6

Nên ( 2 ^ 4 ) ^ 13 = 2 ^ 52 có tận cùng là 6

=> 2 ^ 52 . 2 = 2 ^ 53 có tận cùng là 2

Ta có : 6 ^ n với n là số tụ nhiên khác 0 có tận cùng là 6

Nên : 6 ^ 70 có tận cùng là 6

Do đó  : 2 ^ 53 . 6 ^ 70 có tận cùng là 2

Bình luận (0)
NL
Xem chi tiết
PL
20 tháng 10 2021 lúc 19:57
Đó là một số
Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
8 tháng 10 2023 lúc 14:41

Để tìm chữ số tận cùng, chúng ta chỉ quan tâm đến phần dư khi chia cho 10 của mỗi số hạng. Vì 3^31 và 7^100 đều lớn và tính toán chính xác số này có thể rất phức tạp, chúng ta có thể sử dụng tính chất của phép lũy thừa để đơn giản hóa bài toán.

Chúng ta biết rằng chữ số tận cùng của 3^31 sẽ là chữ số tận cùng của 3^1, 3^2, 3^3, ..., 3^30, 3^31. Tương tự, chữ số tận cùng của 7^100 sẽ là chữ số tận cùng của 7^1, 7^2, 7^3, ..., 7^99, 7^100.

Ta có thể lập bảng và tìm một mẫu lặp lại của chữ số tận cùng để giải quyết bài toán này:

3^1: 3 3^2: 9 3^3: 7 3^4: 1 3^5: 3 ...

7^1: 7 7^2: 9 7^3: 3 7^4: 1 7^5: 7 ...

Nhận thấy rằng chữ số tận cùng của các lũy thừa của 3 lặp lại theo chu kỳ 4 (3, 9, 7, 1) và chữ số tận cùng của các lũy thừa của 7 lặp lại theo chu kỳ 4 (7, 9, 3, 1).

Vì vậy, chúng ta chỉ cần tìm chữ số tận cùng của 3^31 và 7^100 trong chu kỳ này.

3^31 có chữ số tận cùng là chữ số tận cùng của 3^3 (7) vì 31 chia hết cho 4. 7^100 có chữ số tận cùng là chữ số tận cùng của 7^4 (1) vì 100 chia hết cho 4.

Tổng của chữ số tận cùng này là 7 + 1 = 8.

Vậy, chữ số tận cùng của 3^31 + 7^100 là 8.

Bình luận (0)
NT
8 tháng 10 2023 lúc 15:37

ko coppy chatGPT

Bình luận (0)
NH
Xem chi tiết
NH
31 tháng 10 2015 lúc 16:43

bạn viết cách giải đi để mình ****

Bình luận (0)
NT
Xem chi tiết
DV
8 tháng 4 2015 lúc 22:15

Tìm chữ số tận cùng của \(234^{6^{7^8}}\):

\(7^{4n}\)có chữ số tận cùng là 1 => \(7^8\)có chữ số tận cùng là 1.

Ta có: \(234^{6^{\left(...1\right)}}\)

\(6^n\)có chữ số tận cùng là 6 (n \(\in\) N*) => \(6^{\left(...1\right)}\)có chữ số tận cùng là 6.

Ta lại có: \(234^{\left(...6\right)}\)

Số có chữ số tận cùng là 4 khi nâng lên lũy thừa với số mũ 6 luôn có chữ số tận cùng là 6 =>\(234^{\left(...6\right)}\)có chữ số tận cùng là 6.

            Kết luận \(234^{6^{7^8}}\)có chữ số tận cùng là 6.

 

Bình luận (0)
DV
8 tháng 4 2015 lúc 22:20

Mình chắn chắn 100%. Mình đã mất công ghi lời giải rồi thì bạn chọn Đúng cho mình đi !

 

Bình luận (0)
TG
31 tháng 10 2016 lúc 21:19

Giỏi lắm

Bình luận (0)
TK
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NH
8 tháng 10 2023 lúc 15:09

máy tính

 

Bình luận (0)