Tìm các chữ số a, b, c, biết:
a. cbaba+ abcaa= bdba0 ( 0 : số 0)
b. ab*cc*abc= abcabc
1. abcd + abc = bddbc
2 . bccb - abc = ab
3. cbaba + abcaa = bdba0
4 . ab x cc x abc = abcabc
5. ( a + b + c ) x 11 = abc
6. abcde x 9 = edcba
7. cdebc - abca - acac = 0
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
thay mỗi chữ số dưới đây bằng chữ số thích hợp
a) ABCD + ABC = ĐBC
b) BCCB - ABC =AB
c) CBABA + ABCAA = BDBAC
d) AB . CC .ABC =ABCABC
a) Số ĐBC có mấy chữ số vậy?
b) A = 9 ; B = 1 ; C = 0
c) A = 6 ; B = 9 ; C = 2 ; D = 8
d) A = 9 ; B = C = 1
bccb-ab=abc
cbaba+abcaa=bdba0
1. Tìm các chữ số : a,b,c khác nhau biết : ab * cc * abc = abcabc
Tìm các chữ số a, b, c đôi một khác nhau, biết rằng ab . cc . abc = abcabc
Tìm các chữ số a, b, c đôi một khác nhau, biết rằng ab . cc . abc = abcabc
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\) (\(a,b,c\in N;0< a\le9;0\le b\le9\))
\(\Leftrightarrow10a+b+11c+100a+10b+c=100100a+10010b+1001c\)
\(\Leftrightarrow110a+11b+12c-100100a-10010b-1001c\)
\(\Leftrightarrow-99990a-9999b-989c=0\)
Vì \(0< a\le9\) và \(0\le b,c\le9\)
\(\Rightarrow\left\{{}\begin{matrix}-99990a< 0\\-9999b\le0\\-989c\le0\end{matrix}\right.\)
\(\Rightarrow-99990a-999b-989c< 0\)
\(\Rightarrow\left(a;b;c\right)\in\varnothing\)
Vậy không có a,b,c thỏa mãn.
thay các chữ a,b,c bằng chữ số không giống nhau thích hợp
\(\overline{ab}\times\overline{cc}\times\overline{abc}=\overline{abcabc}\)
giải
biến đổi đẳng thức thành
\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)
\(\overline{ab}.c=1001\div11=91\)
phân tích ra thừa số nguyên tố \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là \(13.7\)hoặc \(91.1\)
th1 cho \(\overline{ab}=13,c=7\)
th2 cho \(\overline{ab}=91,c=1\)loại vì b=c
vậy ta có \(13.77.137=137137\)
Sửa một chút nhé:
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)
<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)
<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)
<=> \(\overline{ab}.c.11=1001\)
<=> \(\overline{ab}.c=91\)
Thay mỗi chữ trong phép tính sau bởi chữ số thích hợp
a, ( a+b+c)×11=abc
b, ab × cc × abc = abcabc
Các bạn nhớ ghi rõ cách giải ra nhé
a) (a + b + c) x 11 = abc
=> 11a + 11b + 11c = 100a + 10b + c
=> b + 10c = 89a
=> b + 10c chia hết cho 89
Mà b,c là chữ số => b + 10c = 89; a = 1
=> b = 9; c = 8
Ta có phép tính đúng là: (1 + 9 + 8) x 11 = 198
b) ab x cc x abc = abcabc
=> ab x cc x abc = abc x 1001
=> ab x cc = 1001 = 11.7.13 = 77.13
=> ab = 13; cc = 77
=> a = 1; b = 3; c = 7
Ta có phép tính đúng là: 13 x 77 x 137 = 137137
vế trái :1,01 x a,b=( 1 + 0.01) x a,b
=a,b + 0,0ab
=a,bab
Mà a.bab=-6,ba3
cho a,b,c là các chữ số ( a,b khác 0 ) thõa mãn a . bcd .abc = abcabc . ( có dấu gạch ngang )
tìm abcd = ?
Có abbc < 10.000
=> ab.ac.7 < 10000
=> ab.ac < 1429
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)
=> a0 < 38
=> a <= 3
+) Với a = 3 ta có
3bbc = 3b.3c.7
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại
+)Với a = 2 ta có
2bbc = 2b.2c.7
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)
=> a chỉ có thể = 1
Ta có 1bbc = 1b.1c.7
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)
=> 1c.7 < 110 => 1c < 16 => c < 6
vậy c chỉ có thể = 5
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105
<=> 100.1b + b5 = 1b.105b
<=> b5 = 5.1b
<=> 10b + 5 = 5.(10+b)
=> b = 9
vậy số abc là 195
chúc bn hk toyó @_@