Những câu hỏi liên quan
H24
Xem chi tiết
HN
Xem chi tiết
NT
23 tháng 5 2017 lúc 9:22

a, Ta có: abcdeg = 1000. abc + deg

= 999. abc + abc + deg

= 37. 27 . abc + abc + deg

Có 37. 27. abc chia hết cho 37

và abc + deg chia hết cho 37.

Vậy abcdeg chia hết cho 37 với abc + deg chia hết cho 37.

b, Ta có: abcdeg = 1000. abc + deg

= 1001 . abc - abc + deg

= 7. 143 . abc - (abc - deg)

Có 7, 143 , abc chia hết cho 7

và abc - deg chia hết cho 7

Vậy abcdeg luôn chia hết cho 7 với abc - deg chia hết cho 7.

c, Trong 8 số tự nhiên liên tiếp thì luôn có các dạng số dư của một số khi chia cho 7 là \(\left\{0;1;2;3;4;5;6\right\}\)nhưng có tới tám số và 7 số dư thì chắc chắn trong tám số đó chắc chắn có 2 số đồng dư với nhau gọi là abc và deg. Mà abc và deg đồng dư với nhau thì hiệu abc - deg chia hết cho 7. Theo câu b thì abcdeg chia hết cho 7 với abc - deg chia hết cho 7. Suy ra abcdeg chia hết cho 7 với abc - deg chia hết cho 7.

Vậy trong 8 số tự nhiên có 3 chữ số, tồn tại hai số mà khi viết liêm tiếp nhau thì tạo thành một số có sáu chữ số chia hết cho 7.

Chúc bạn học tốt :)

Bình luận (0)
HH
Xem chi tiết
MT
Xem chi tiết
TN
Xem chi tiết
DT
30 tháng 3 2016 lúc 6:03

tk cho mk diiiii 

Bình luận (0)
HS
Xem chi tiết
NH
Xem chi tiết
YP
Xem chi tiết
H24
Xem chi tiết
TD
11 tháng 10 2015 lúc 10:37

abc chia hết cho 7 

=> 100a+10b+c chia hết cho 7 

=> 98a+2a+7b+3b+c chia hết cho 7 

=> (98a+7b)+( 2a+3b+c) chia hết cho 7 

=> 7.(14a+b) + ( 2a+3b+c) chia hết cho 7 

=> 2a+3b+c chia hết cho 7 ( vì 7.(14a+b) chia hết cho 7)

=> dpcm

 

Bình luận (0)