Tìm n thuộc Z
\(\frac{3n+4}{2-n}\) là số nguyên
Cho 2 phân số : M = \(\frac{3n+1}{4}\) ; N = \(\frac{18}{n+1}\)
a. Tìm n thuộc Z để M là hợp số ; N là số nguyên tố
b. Tìm n thuộc Z để M.N là số nguyên dương
c. Tìm n thuộc Z để M.N = -4\(\frac{1}{2}\)
Tìm n thuộc Z
a) \(\frac{n+3}{n-2}\)là số nguyên âm
b) \(\frac{n+7}{3n-1}\)thuộc Z
c) \(\frac{3n+2}{4n-5}\)thuộc N
a ) Để \(\frac{n+3}{n-2}\) là số nguyên âm <=> n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết cho n - 2
<=> 5 chia hết cho n - 2
<=> n - 2 thuộc Ư ( 5 )
Ư ( 5 ) = { + 1 ; + 5 }
n - 2 | 1 | - 1 | 5 | - 5 |
n | 3 | 1 | 7 | - 3 |
\(\frac{n+3}{n-2}\) | 6/1 | 4/-1 | 10/5 | 0 |
Vậy để n + 3 / n - 2 là số âm thì n = 1
Câu b và c làm tương tự
Tìm n thuộc Z để A= \(\frac{3n+10}{n^2+7n+1}\)là số nguyên
Cho A=\(\frac{3n-5}{n+4}\) . Tìm n thuộc Z để A có giá trị là số nguyên
3n-5 chia hết cho n+4
(3n+12)-17chia hết n+4
3(n+4)-17 chia hết n+4
17 chia hết n+4
Suy ra:
n+4 thuộc ước 17
Còn lại bạn tự làm nhé!!!!
cho H = \(\frac{n-1}{3n-6}\)(n ko =2). Tìm n thuộc Z để H là số nguyên
Tìm n thuộc Z để biểu thức sau là số nguyên:
\(\frac{2n+3}{3n-1}\) \(-\) \(\frac{n-2}{3n-1}\)
Để 2n + 3 /3n-1 - n - 2 / 3n - 1 là số nguyên
suy ra : 2n + 3 / 3n - 1 và n - 2 / 3n - 1 là số nguyên
suy ra : 2n + 3 chia hết cho 3n - 1
suy ra : n - 2 chia hết cho 3n - 1
rồi bạn lập bảng giá trị các ước nha
CHÚC BẠN HỌC TỐT ^_^
cục cức chấm mắm
a) Tìm n thuộc Z để các phân số sau có giá trị là số nguyên
\(A=\frac{3n+17}{n+2}\)
\(B=\frac{4n-17}{n-1}\)
\(C=\frac{3n-6}{n-1}\)
\(D=\frac{2n+19}{n-3}\)
b) Tìm n thuộc Z để phân số \(P=\frac{n+6}{n+1}\)có giá trị là số tự nhiên
Cho biểu thức : A=\(\frac{3n-5}{n+4}\)với n thuộc Z
a) Số nguyên n phải có điều kiện gì để A là phân số ?
b) Tìm các số nguyên n để A nhận giá trị nguyên?
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt
Tìm n thuộc Z để \(\frac{n+7}{3n-1}\)là số nguyên
Lời giải:
Với $n\in\mathbb{Z}$, để $\frac{n+7}{3n-1}$ nguyên thì:
$n+7\vdots 3n-1$
$\Rightarrow 3(n+7)\vdots 3n-1$
$\Rightarrow (3n-1)+22\vdots 3n-1$
$\Rightarrow 22\vdots 3n-1$
$\Rightarrow 3n-1\in \left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$
$\Rightarrow n\in \left\{0; \frac{2}{3}; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$
Do $n$ nguyên nên:
$n\in\left\{0; 1; 4; -7\right\}$