Những câu hỏi liên quan
NM
Xem chi tiết
PQ
25 tháng 3 2018 lúc 20:17

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

Bình luận (0)
NT
Xem chi tiết
NT
8 tháng 7 2016 lúc 9:43

các bn ơi giải giúp mình đi mà

Bình luận (0)
LN
Xem chi tiết
NK
Xem chi tiết
H24
4 tháng 8 2019 lúc 21:51

Bạn tham khảo ở link này nhé :

Câu hỏi của Tăng Minh Châu - Toán lớp 6 | Học trực tuyến

Bình luận (0)
DN
Xem chi tiết
ND
25 tháng 9 2020 lúc 21:54

7/139

Bình luận (0)
 Khách vãng lai đã xóa
DV
Xem chi tiết
TN
Xem chi tiết
Y
28 tháng 3 2019 lúc 22:39

\(3B=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(B=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow4B=3B+B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

+ Đặt \(M=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(3M=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(\Rightarrow4M=3M+M=3-\frac{1}{3^{99}}\)

\(\Rightarrow M=\frac{3}{4}-\frac{1}{3^{99}\cdot4}\)

\(\Rightarrow4B=M-\frac{100}{3^{100}}=\frac{3}{4}-\frac{1}{3^{99}\cdot4}-\frac{100}{3^{100}}\)

\(\Rightarrow B=\frac{3}{16}-\frac{1}{3^{99}\cdot16}-\frac{100}{3^{100}\cdot4}\) \(\Rightarrow B< \frac{3}{16}\)

Bình luận (0)
Y
28 tháng 3 2019 lúc 22:14

a) \(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

\(\Rightarrow3A=2A+A=1-\frac{1}{2^6}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{2^6\cdot3}< \frac{1}{3}\) ( đpcm )

Bình luận (0)
ES
Xem chi tiết
BH
11 tháng 8 2016 lúc 9:49

B= (2/3-1/4+5/11):(5/12+1-7/11)

B=(8/12-3/12+5/11):(5/12+1-7/11)

B=(5/12+5/11):(5/12+1-7/11)

B=115/132:(17/12-7/11)

B=115/132:103/132

B=115/103

Mik làm mẫu cho 1 con nè. các câu sau cxn tương tự từ trái wa phải.Nều bạn tính toán kém thì cứ làm như câu mẫu trên. Mik mà làm bài này thì mik làm theo cách nhanh hơn cơ. Chúc bạn học tốt và có 1 ngày tốt lành nghen. Có j cần giúp đỡ thì cứ bảo mik

Bình luận (0)
ES
11 tháng 8 2016 lúc 8:58

giúp mk gấp chiều mk đi học rồi khocroi

Bình luận (0)
BH
11 tháng 8 2016 lúc 9:18

Dễ mà bạn. Nếu thấy dài wa hoặc bạn thấy khó thì cứ tính từ trái qua phải đi. MIk xem mik cxn đã thấy mún ngất r đây.gianroi

Bình luận (7)
NT
Xem chi tiết
PD
12 tháng 4 2017 lúc 20:01

a)ta có:

\(\frac{3}{10}\)>\(\frac{3}{15}\)

\(\frac{3}{11}\)>\(\frac{3}{15}\)

...

\(\frac{3}{14}\)>\(\frac{3}{15}\)

Cộng từng vế của bất đẳng thức trên ta được:

\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)

Hay S>\(\frac{15}{15}\)=>S>1               (1)

ta có :

\(\frac{3}{11}\)<\(\frac{3}{10}\)

\(\frac{3}{12}\)<\(\frac{3}{10}\)

...

\(\frac{3}{14}\)<\(\frac{3}{10}\)

Cộng từng vế của bất đẳng thức trên ta được:

\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)

Hay S<\(\frac{15}{10}\)<\(\frac{20}{10}\)=2

Vậy S<2                    (2)

Theo câu 1 ta có : S>1

Theo câu 2 ta có :S<2

Vậy 1<S<2 

=>S ko phải số tự nhiên

Bình luận (0)
CB
Xem chi tiết