tìm số tự nhiên n để \(\frac{n+3}{n-2}\) là phân số tối giản
tìm số tự nhiên n để \(\frac{n+3}{n-2}\) là phân số tối giản
=> n + 3 chia hết cho n - 2
=> n - 2 + 5 chia hết cho n - 2
=> 5 chia hết cho n - 2
=> n - 2 thuộc {-5; -1; 1; 5}
=> n thuộc {-3; 1; 3; 7}
Mà n là STN
=> n thuộc {1; 3; 7}
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
a) Chứng minh rằng với mọi số tự nhiên n thì phân số 21n+4/14n+3 là phân số tối giản
b) Tìm tất cả các số tự nhiên n để phân số n+3/n-12 là phân số tối giản
c) Tìm các số tự nhiên n để phân số 21n+3/6n+4 rút gọn được
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
cho phân số M=\(\frac{8n+193}{4n+3}\)
a)Tìm số tự nhiên n để M là STN
b)Tìm số tự nhiên n để M là phân số tối giản
Bài 1*:Tìm \(n\in N\)để phân số \(\frac{5n+6}{8n+7}\)không tối giản
Bài 2*: Tìm số tự nhiên n nhỏ nhất để các phân số sau là tối giản:\(\frac{7}{n+9};\frac{8}{n+10};...;\frac{31}{n+33}\)
Bài 3*: Cho phân số\(\frac{p}{q}\) là tối giản. Chứng minh phân số\(\frac{p+q}{q}\) cũng tối giản
1,RG các phân số sau :a,\(\frac{19999999999}{99999999995}\)
b,\(\frac{121212}{424242}\)c,\(\frac{3.7.13.37.39-10101}{505050+707070}\)
2,a,chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{n+3}{n-12}\)là phân số tối giản
b,tìm các số tự nhiên n để phân số \(\frac{21n+3}{6n+4}\)là phân số tối giản
c,tìm các số tự nhiên n để phấn số \(\frac{21n+3}{6n+4}\)rút gọn được
!!!!!!!
b) \(\frac{121212}{424242}=\frac{121212:60606}{424242:60606}=\frac{2}{7}\)
c) \(\frac{3.7.13.37.39-10101}{505050+707070}\)
\(=\frac{393939-10101}{1212120}\)
\(=\frac{383838}{1212120}\)
\(=\frac{19}{60}\)
Phân số thứ nhất viết ra
Có mẫu so tử gấp ba , khó gì!
Ghi thêm phân số thứ nhì
Lấy mẫu so tử , đọ thì hơn năm
Phân số thứ nhì sẽ bằng
Phân số thứ nhất khi tăng hai lần
Hai phân số đó là gì?
Mình mời các bạn cùng nhau giải nào
tìm tất cả các số tự nhiên n để phân số \(\frac{n+13}{n-2}\)là phân số tối giản
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
Tìm số tự nhiên n nhỏ nhất để các phân số sau tối giản:
\(\frac{1}{n+2};\frac{2}{n+3};\frac{3}{n+4};\frac{4}{n+5}\)