Những câu hỏi liên quan
NB
Xem chi tiết
NT
8 tháng 5 2016 lúc 21:45

*n=1 thấy: 2=1x4/2 =>* đúng

Giả sử * đúng với n=k, ta có: 2+5+8+...+3k-1=k(3k+1)/2

=> 2+5+8+...+(3k-1)+(3k+2)=k(3k+1)/2+3k+2=(k(3k+1)+6k+4)/2

=> (k(3k+1)+3k+3k+4)/2=(k(3k+4)+3k+4)/2=(k+1)(3k+4)/2

tức là  2+5+8+...+3k+1=(k+1)(3k+4)/2

=> * đúng với n=k+1

=> Theo nguyên lí quy nạp => * đúng với mọi n thuộc N*

Chuyên toán sao học quy nạp sớm thế. 

Bình luận (0)
QW
Xem chi tiết
CT
Xem chi tiết
HD
31 tháng 3 2016 lúc 19:45

phục bạn rồi lớp 6 học cái này thì chỉ có h/s giỏi lớp 6 mới làm chứ bài này không phải của lớp 6 đâu

Bình luận (0)
HK
31 tháng 3 2016 lúc 19:48

tớ học rùi

Bình luận (0)
MN
31 tháng 3 2016 lúc 19:49

tách dưới mẫu ra là ok thui

Bình luận (0)
CT
Xem chi tiết
SL
2 tháng 4 2016 lúc 19:17

A= 1/2+ 1/4+ 1/8+ 1/2n

=>2A = 1 + 1/2 +1/4+ 1/2n-1

=>A = 1 - 1/2n-1

=> A < 1

 B= 4/(5*2!) + 4/(5*3!)+...+4/(5*n!)

=>5/4* B =1/2!+1/3!+...+1/n!<1

=>B < 0,8

mình nha các bạn !!!

Bình luận (0)
TN
2 tháng 4 2016 lúc 19:05

A=1/2+1/4+1/8+1/2n

=>2A=1+1/2+1/4+1/2n-1

=>A=1-1/2n-1

=>A<1

Bình luận (0)
TN
2 tháng 4 2016 lúc 19:08

B=4/(5*2!)+4/(5*3!)+...+4/(5*n!)

=>5/4*B=1/2!+1/3!+...+1/n!<1

=>B<0,8

Bình luận (0)
CT
Xem chi tiết
DP
Xem chi tiết
NC
25 tháng 5 2020 lúc 19:21

a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)

+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng

=> (@@) đúng với n = 1 

+) G/s (@@) đúng cho đến n 

+) Ta chứng minh (@@ ) đúng với n + 1 

Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)

\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)

=>  (@@) đúng với n + 1

Vậy (@@ ) đúng với mọi số tự nhiên n khác 0

Bình luận (0)
 Khách vãng lai đã xóa
NC
26 tháng 5 2020 lúc 1:46

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)

Ta chứng minh (@) đúng  với n là số tự nhiên khác 0 quy nạp theo n 

+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng 

=> (@) đúng với n = 1 

+) G/s (@) đúng cho đến n 

+) Ta cần chứng minh (@) đúng với n + 1 

Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi số tự nhiên n khác 0.

Bình luận (0)
 Khách vãng lai đã xóa
NC
26 tháng 5 2020 lúc 1:50

c) Ta chứng minh 

\(1^3+2^3+3^3+...+n^3=\frac{n^2.\left(n+1\right)^2}{4}\)(@)  đúng với mọi số tự nhiên n khác 0 

+) Với n = 1 ta có: \(1^3=\frac{1^2\left(1+1\right)^2}{4}\)đúng 

=> (@) đúng với n = 1 

+) G/s n(@) đúng cho đến n 

+) Ta chứng minh (@) với n + 1 

Thật vậy: 

\(1^3+2^3+3^3+...+n^3+\left(n+1\right)^3=\frac{n^2.\left(n+1\right)^2}{4}+\left(n+1\right)^3\)

\(=\frac{\left(n+1\right)^2\left(n^2+4n+4\right)}{4}=\frac{\left(n+1\right)^2\left(n+2\right)^2}{4}\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi số tự nhiên n khác 0.

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
5 tháng 2 2017 lúc 18:40

áp dụng đinh lý Py - ta go trong tam giác ABc ta có 

AB^2 - AC^2 = BC^2 

=> n = 2 

đáp số n = 2

Bình luận (0)
NT
5 tháng 2 2017 lúc 18:39

1, 

x/y = 2 => x= 2y 

ta lại có x+ 2y + 8 = 0 

=> 2y + 2y + 8 = 0 

=> 4y = - 8 

=> y = - 2 

=> x = - 4 

vậy x- y = \(-4-\left(-2\right)\)= - 2 

đáp số x- y = -2

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết