TIM GIA TRI LON NHAT
\(A=\left|x+2\right|+\left|x-1\right|\)
tim gia tri lon nhat
\(A=\left|x+2\right|+\left|x-1\right|\)
1)Tim gia tri lon nhat,gia tri nho nhat neu co:
a)\(A=\left(x+1\right)^2-10\)
b)\(B=\left|x-3\right|+\left|x-2023\right|\)
2)Chung minh rang:a^2+3a+1 khong chia het cho 2 (a thuoc Z)
tim gia tri lon nhat :
D=\(\dfrac{2\left|x\right|+3}{3\left|x\right|-1}\)
\(D=\dfrac{2\left|x\right|+3}{3\left|x\right|-1}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+3\ge3\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|-1\ge-1\end{matrix}\right.\)
\(MAX_D\Rightarrow D\in Z^+\)
Chắc chắn: \(2\left|x\right|+3\in Z^+\)
\(\Rightarrow3\left|x\right|-1\in Z^+\)
\(MAX_D\Rightarrow MIN_{3\left|x\right|-1}\)
\(\Rightarrow3\left|x\right|-1=1\)
\(\Rightarrow3\left|x\right|=2\Rightarrow\left|x\right|=\dfrac{2}{3}\)
\(\Rightarrow MAX_D=\dfrac{2\left|\dfrac{2}{3}\right|+3}{3\left|\dfrac{2}{3}\right|-1}=\dfrac{\dfrac{13}{3}}{1}=\dfrac{13}{3}\)
tim gia tri lon nhat cua bieu thuc \(f\left(x\right)=\dfrac{1}{x^4-x^2+1}\)
Ta co :\(\dfrac{1}{f\left(x\right)}=\) \(x^4-x^2+1=x^4-2.\dfrac{1}{2}x^2+\dfrac{1}{4}+\dfrac{3}{4}\)
= \(\left(x^2-\dfrac{1}{4}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=> f(x) ≤ \(\dfrac{4}{3}\)
Vay max f(x) =\(\dfrac{4}{3}\)
tim gia tri nho nhat , gia tri lon nhat
A=\(\left(4x-1\right)^4+\left|2x-3y\right|+25,6\)
B=\(\left(3x+2y\right)^2+\left|y-3\right|-10,5\)
C=\(40,5-\left(x-3\right)^2-\left|4x-3y\right|\)
D=\(-17.5-\left|y+2\right|-\left(3y+4\right)^4\)
giup minh nhe minh dang can gap
a)
\(\left\{{}\begin{matrix}\left(4x-1\right)^4\ge0\\\left|2x-3y\right|\ge0\end{matrix}\right.\) \(\Rightarrow A\ge25,6\) tự tìm cận
không có Max
b) giống vậy
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\\\left|4x-3y\right|\ge0\Rightarrow-\left|4x-3y\right|\le0\end{matrix}\right.\)
\(C\le40,5\) tự tìm cận
không có GTNN
Tim gia tri lon nhat :
a, A= 5-| 2x - 1 |
b, B= \(\dfrac{1}{\left|x-1\right|+3}\)
c, C= x +\(\dfrac{1}{2}-\left|x-\dfrac{2}{3}\right|\)
\(A=5-\left|2x-1\right|\le5\)
Dấu "=" xảy ra khi:
\(2x=1\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{1}{\left|x-1\right|+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra khi:
\(x=1\)
\(C=x+\dfrac{1}{2}-\left|x-\dfrac{2}{3}\right|\le\left|x+\dfrac{1}{2}-x-\dfrac{2}{3}\right|=\dfrac{1}{6}\)
Dấu "=" xảy ra khi: \(-\dfrac{1}{2}\le x\le\dfrac{2}{3}\)
Ta có: \(\left|2x-1\right|\le0\) với mọi x
\(\Rightarrow5-\left|2x-1\right|\le5-0\) với mọi x
\(\Leftrightarrow A\le5\)
\(\Rightarrow A_{max}=5\)
Dấu \("="\) xảy ra khi:
\(\left|2x-1\right|=0\\ 2x-1=0\\ 2x=1\\ x=1:2=0,5\)
Vậy A đạt giá trị lớn nhất khi \(x=0,5\)
cho bieu thuc \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x+2}}{x-2\sqrt{x}+1}\right)\cdot\frac{\left(1-x\right)^2}{2}\)
a) rut gon P
b) tim gia tri lon nhat cua P
\(ĐKXĐ:0\le x\ne x\)
a) \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(P=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)
\(P=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b) \(P=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}.\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(\Rightarrow MAX_P=\frac{1}{4}\text{ khi }x=\frac{1}{4}\)
\(\text{Cho x }\inℤ\text{ . Tim gia tri lon nhat cua P = - }\frac{\left|x-5\right|+2}{x-5}\)
Cac ban giup mik vs
tim gia tri nho nhat
1)\(A=\left|x-1010\right|+\left|x-1011\right|\)\
2)\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+2011\)
3)\(C=5x^2+20x+2010\)
\(C=5x^2+20x+2010\)
\(=5\left(x^2+4x+402\right)\)
\(=5\left(x^2+2.x.2+2^2+398\right)\)
\(=5\left[\left(x+2\right)^2+398\right]\)
VÌ \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+398\ge398\forall x\)
\(\Rightarrow C=5\left[\left(x+2\right)^2+398\right]\ge1990\forall x\)
Dấu "=" xảy ra <=> x = - 2
Vậy gtnn của C là 1990 tại x = - 2
1) Giá trị nhỏ nhất của A = 0
2) Giá trị nhỏ nhất của B = 2011
3) Gí trị nhỏ nhất của C = 2010
nếu bạn cần cách giải chi tiết thì nhắn tin gửi cho mk; mk sẽ giải cho
1) Ta có : \(\left|x-1010\right|,\left|x-1011\right|\ge0\left(\forall x\right)\)
Nên |x - 1010| , |x - 1011| = 0
Suy ra : x = 1010 ; x = 1011
Mà x ko thể có hai gt nên
x = 1010 hoặc x = 1011
Vậy A đạt gt nhỏ nhất khi x = 1010 hoặc x = 1011