Những câu hỏi liên quan
TU
Xem chi tiết
SL
22 tháng 4 2016 lúc 17:17

 P(x) có hai nghiệm ​​​x1, xkhác nhau => P(x1) = 0 và P(x2) = 0

=>  P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x khác 0)

Mà  P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0

Vậy a = b = 0

Bình luận (0)
LD
22 tháng 4 2016 lúc 17:20

 P(x) có hai nghiệm ​​​x1, xkhác nhau => P(x1) = 0 và P(x2) = 0

=>  P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x khác 0)

Mà  P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0

Vậy a = b = 0

Bình luận (0)
TU
22 tháng 4 2016 lúc 17:22

Các bạn ơi người ta bắt chứng minh f(x) là đa thức 0 chứ 0 phải a=b=0

Bình luận (0)
LN
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
QN
Xem chi tiết
TK
Xem chi tiết
VM
25 tháng 4 2017 lúc 15:40

Bạn vô câu hỏi tương tự xem nhé.

Bình luận (0)
SX
Xem chi tiết
H24
14 tháng 8 2015 lúc 15:41

a,a+b+c=0 <=>c=-a-b

Khi đ f(x)=ax^2+bx-a-b

f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)

=>f(x) có nghiệm x=1

b,a-b+c=0 <=>c=b-a

Khi đó f(x)=ax^2+bx+b-a

f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)

=>f(x) có nghiệm x=-1

 

Bình luận (0)
VL
11 tháng 4 2017 lúc 19:37

a. Ta có: \(f\left(1\right)=a.1^2+b.1+c\)

\(f\left(1\right)=a+b+c\)

Mà theo đề bài có a+b+c=0

=>\(f\left(1\right)=0\)

x=1 là một nghiệm của đa thức f(x)

Phần b bạn làm tương tự nhé

Bình luận (0)
SX
Xem chi tiết
H24
Xem chi tiết
ND
8 tháng 5 2017 lúc 20:56

Vì x=1, x=-1 là ngiệm của đa thức f(x) nên

a.1^2+b.1+c=a.(-1)^2+b.(-1)+c=0                 

=>a+b+c=a-b+c=0                             (1)

=>b=-b

=>b=0

thay b=0 vào (1) ta có a+c=0

=>a và c là 2 số đối nhau

Bình luận (0)
NT
8 tháng 5 2017 lúc 20:59

k cho mình

Bình luận (0)