So sánh
A = \(\frac{3^{10}+1}{3^9+1}\) và B = \(\frac{3^9+1}{3^8+1}\)
\(Cho A=\frac{3^{10}+1}{3^9+1};B=\frac{3^9+1}{3^8+1}\)
so sánh A và B = 4 cách
hép mi
So sanh cac phan so sau:
A=\(\frac{3^{10}+1}{3^9+1}\)va B=\(\frac{3^9+1}{3^8+1}\)
bn vào /h7.net/hoi-dap/toan-6/so-sanh-a-3-10-1-3-9-1-va-b-3-9-1-3-8-1--faq205231.html
Trả lời:
A = \(\frac{3^{10}+1}{3^9+1}=\frac{3.3^9+1}{3.3^8+1}=\frac{3^9+1}{3^8+1}\)= B
_Học tốt bạn nha_
So sanh A va B, biet :
a)\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8};B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
b)\(A=\frac{7^{10}}{1+7+7^2+...+7^9};B=\frac{5^{10}}{1+5+5^2+...+5^9}\)
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
So sánh:
1/ A= \(\frac{10^9+2}{10^9-1}\) và B =\(\frac{10^9}{10^9-3}\)
2/ A = \(\frac{2015^8+3}{2015^8-2}\)và B=\(\frac{2015^8+4}{2015^8-1}\)
??????????????????????????????????????????????????????????????????????????????????????
1/ Do A > 1 ; B < 1 nên A > B
2/ Áp dụng a/b > 1 <=> a/b < a+m/b+m ( a,b,m thuộc N*)
Do A > 1 nên A < 20158 + 3 + 1 / 20158 - 2 + 1 = 20158 + 4 / 20158 - 1 = B
=> A < B
1) Do A > 1 ; B < 1 nên A > B
2) Áp dụng a/b > 1 <=> a/b < a+m/b+m ( a,b,m thuộc N*)
Do A > 1 nên A < 20158 + 3 + 1 / 20158 - 2 + 1 = 20158 + 4 / 20158 - 1 = B
=> A < B
so sanh: A= \(\frac{3^{10}+1}{3^9+1}\) voi B=\(\frac{3^9+1}{3^8+1}\)
\(A=\frac{3^{10}+1}{3^9+1}=\frac{3^{10}+3-2}{3^9+1}=\frac{3\left(3^9+1\right)-2}{3^9+1}=3-\frac{2}{3^9+1}\)
\(B=\frac{3^9+1}{3^8+1}=\frac{3^9+3-2}{3^8+1}=\frac{3\left(3^8+1\right)-2}{3^8+1}=3-\frac{2}{3^8+1}\)
Có \(3^9+1>3^8+1\)
\(\Rightarrow\frac{2}{3^9+1}< \frac{2}{3^8+1}\)
\(\Rightarrow3-\frac{2}{3^9+1}>3-\frac{2}{3^8+1}\)
\(\Rightarrow A>B\)
So sánh:
a, A= \(\frac{10^8+2}{10^8-1}\) ; B= \(\frac{10^8}{10^8-3}\)
b, A= \(\frac{8^{10}+1}{8^{10}-1}\) ; B=\(\frac{8^{10}-1}{8^{10}-3}\)
c, A= \(\frac{100^9+4}{100^9-1}\): B= \(\frac{100^9+1}{100^9-4}\)
mk giải cho câu A rồi tự suy mấy câu khác nhé!
ta có : A = 10^8 + 2/10^8 - 1
=> A = 10^8 - 1 + 3/10^8 - 1
=> A = 1+ 3/10^8 - 1
B = 10^8/10^8 - 3
=> B = 10^8 - 3 + 3/10^8 - 3
=> B = 1+ 3/10^8 - 3
vì 3/10^8 - 1 < 3/10^8 - 3
=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3
=> A < B
vậy A < B
cách này cô dạy mk đó
CHO A=1+2+2^2+2^3+..+2^9;B=5.2^8.SO SÁNHA VÀ B
A=1+2+2^2+2^3+....+2^9
2A=2+2^2+2^3+....+2^10
2A-A=2^10-1
A=2^10-1/2
B=5.2^8=(2^2+1).2^8=2^10+2^8
=>B>A
2A = 2(1 + 2 + 22 + .... + 29 )
= 2 + 22 + 23 + ..... + 210
2A - A = (2 + 22 + 23 + ..... + 210) - (1 + 2 + 22 + .... + 29 )
A = 210 - 1
B = 5.28 = (22 + 1).28 = 210 + 28
210 - 1 < 210 + 28
=> A < B
Cho A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
B = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
a) So sánh A và B
b) Chứng minh A = \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
So sánh các phân số sau
a,A=\(\frac{54.107-53}{53.107+54}\) và B=\(\frac{135.269-133}{134.269+135}\) b, A=\(\frac{3^{10+1}}{3^9+1}\) và B=\(\frac{3^9+1}{3^8+1}\)