Những câu hỏi liên quan
LH
Xem chi tiết
DT
7 tháng 4 2016 lúc 20:34

=2015/2016

Bình luận (0)
HD
Xem chi tiết
HP
Xem chi tiết
VD
21 tháng 3 2017 lúc 16:34

bằng 15 hay sao ý

Bình luận (0)
NH
Xem chi tiết
AN
27 tháng 7 2017 lúc 14:52

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Thế vô bài toán được

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

\(=1-\frac{1}{\sqrt{2016}}\)

Bình luận (0)
TH
Xem chi tiết
DR
Xem chi tiết
CD
Xem chi tiết
DN
Xem chi tiết
FB
Xem chi tiết