Những câu hỏi liên quan
TQ
Xem chi tiết
NT
15 tháng 4 2015 lúc 20:43

2^1995=2^5.2^1990=32.2^1990

32 chia 31 dư 1 nên 32.2^1990 chia 31 dư 1

xuy ra 32.2^1990-1 chia hết cho 31 tương đương 2^1995-1 chia hết cho 31

Bình luận (0)
PT
15 tháng 4 2015 lúc 20:46

25 đồng dư với 1(mod 31)

=>(25)399=21995 đồng dư với 25 đồng dư với 1(mod 31)

=>21995-1 đồng dư với 1-1=0(mod 31)

Vậy 21995 -1 chia hết cho 31(đpcm)

 

Bình luận (0)
NA
Xem chi tiết
HK
Xem chi tiết

Bài 1

\(2^{1995}=2^5\times2^{1990}=32\times2^{1990}\)

Mà \(32\div31\)dư \(1\)nên\(\left(32\times2^{1990}\right)\div31\)dư \(1\)

\(\Rightarrow\left(32\times2^{1900}-1\right)⋮31\)

hay 

\(\left(2^{1995}-1\right)⋮31\)

Bài 2

Làm tương tự

Bình luận (0)
HK
3 tháng 9 2017 lúc 12:20

cảm ơn nhiều nhé

Bình luận (0)
LT
Xem chi tiết
DH
Xem chi tiết
DT
1 tháng 1 2021 lúc 11:28

A= 1+2+3+...+1995

  =1995+(1+1994)+(2+1993)+...+(996+999)+(997+998)

  =1995+1995+1995+...+1995+1995

  =1995x998\(⋮1995\)

    

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
H24
12 tháng 1 2017 lúc 17:55

\(2^{1995}-1=A=1+2+2^2+2^3+2^4...+2^{1994}\)

\(\left(1+2+2^2+2^3+2^4\right)=31\) chia hết cho 31

Số số hạng của A là 1995 chia hết cho 5 

\(A=31.\left(1+2^5+2^{10}+..+2^{\frac{1995}{5}-5}\right)\)=> DPCM

Bình luận (0)
LT
Xem chi tiết
BN
Xem chi tiết
H24
21 tháng 5 2018 lúc 19:14

2^1995 - 1 = ( 2^5)^399 = 32^399 -1

Ma 32 dong du vs 1( mod 31 )

=> 32^399 dong du vs 1( mod 31 )

=> 32^399 dong du vs 0( mod 31 )

=> 2^1995 - 1 chia het cho 31 ( dpcm ) 

Bình luận (0)
NK
21 tháng 5 2018 lúc 19:15

Ta có: \(2^{1995}=\left(2^5\right)^{399}=32^{399}⋮32\)

Mà \(32\equiv1\)(mod 31)

\(\Rightarrow2^{1995}\equiv1\)(mod 31)

\(\Rightarrow2^{1995}-1⋮31\)(đpcm)

           

Bình luận (0)
TL
21 tháng 5 2018 lúc 19:50

Ta có : \(2^{1995}=2^{1990}\cdot2^5=2^{1990}\cdot32\)

Vì \(32\div31\)dư 1 \(\Rightarrow32\cdot2^{1990}⋮31\)

vạy \(2^{1995}-1⋮31\)

Bình luận (0)
MC
Xem chi tiết
H24
4 tháng 1 2017 lúc 16:30

Mình chỉ làm được ý 3 thôi: 

Bình luận (0)
AK
4 tháng 1 2017 lúc 16:40

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

Bình luận (0)
TN
6 tháng 1 2017 lúc 19:53

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 2+ 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

Bình luận (0)