Những câu hỏi liên quan
LD
Xem chi tiết
H24
24 tháng 3 2018 lúc 20:08

Bài nãy sai rồi, cho mình làm lại nha:

\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}\)

\(=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{1}{2011}\)

Vì: \(\frac{1}{2011}>\frac{1}{2012}>\frac{1}{2013}\Rightarrow\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2012}+\frac{1}{2012}>0\)

\(\Rightarrow\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}>3\)

Nên \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)

Bình luận (0)
LH
24 tháng 3 2018 lúc 19:51

chịu........

Bình luận (0)
H24
24 tháng 3 2018 lúc 20:02

Áp dụng tỉ dãy số bằng nhau, ta có:

\(\frac{2011+2012-2013}{2012+2013-2011}=\frac{2011-2012+2013}{2012+2013-2011}=\frac{2011-2012+2013}{-2011-2012+2013}=\left(-1\right)\)

Bình luận (0)
DM
Xem chi tiết
TD
27 tháng 3 2016 lúc 10:20

S>3 nhưng cũng khó giải thích

Bình luận (0)
TL
Xem chi tiết
PC
20 tháng 3 2018 lúc 21:59

S= \(\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+2}{2011}\)

   = 3 + \(\frac{2}{2011}-\frac{1}{2012}-\frac{1}{2013}\)

  có \(\frac{1}{2011}>\frac{1}{2012}\)và \(\frac{1}{2011}>\frac{1}{2013}\)

\(\Rightarrow S>3\)

Bình luận (0)
TL
20 tháng 3 2018 lúc 22:04

mai mink phải nộp rồi

may quá! Thanks bạn rất nhiều

Bình luận (0)
LH
Xem chi tiết
NP
Xem chi tiết
LQ
24 tháng 3 2017 lúc 17:41

S lớn hơn 3 vì , S = 3,000000741

Bình luận (0)
H24
25 tháng 8 2017 lúc 20:51

Bài giải : 

Theo đề bài ra ta có : n. (n - 1) : 2 = 435 

=> n. (n - 1) = 435 . 2 = 870 

=> n.(n-1) = 30. 29

Vậy n = 30. 

Bình luận (0)
VK
25 tháng 8 2017 lúc 20:54

N la : 30

30

30

30

30

Bình luận (0)
LD
Xem chi tiết
LP
Xem chi tiết
LA
30 tháng 9 2016 lúc 9:30

N =\(\frac{2010+2011+2012}{2011+2012+2013}\)

\(\Rightarrow N=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Do: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013};\frac{2011}{2012}>\frac{2011}{2011+2012+2013};\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\Leftrightarrow N>M\)

Bình luận (0)
IT
Xem chi tiết
SN
29 tháng 5 2015 lúc 9:07

\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}

Bình luận (0)
ZI
8 tháng 5 2017 lúc 15:46

Tách A ra thành 2 phân số cùng tử(dễ thôi).

So sánh mỗi phân số với 1 phân số tương ứng ở B.

=>A<B.

Vậy A<B.

Bình luận (0)
NM
Xem chi tiết
KS
20 tháng 7 2018 lúc 21:17

\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)

\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)

\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)

Ta có:

 \(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)

\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)

\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )

\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)

Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\) 

Tham khảo nhé~

Bình luận (0)
HK
20 tháng 7 2018 lúc 21:18

Mỗi số hạng của tổng đều nhỏ hơn 1 => Tổng đó nhỏ hơn 4

Bình luận (0)
DN
20 tháng 7 2018 lúc 21:33

Ta có:

\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}=4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}\)

\(\frac{1}{2013}>\frac{1}{2014},\frac{1}{2012}>\frac{1}{2014},\frac{1}{2011}>\frac{1}{2014}\)

=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}>\frac{3}{2014}\)

=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>0\)

=>\(4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>4\)

Bình luận (0)