CMR : nếu a là 1 số lẻ ko chia hết cho 3 thì a2-1 chia hết cho 6
Nếu a là số lẻ không chia hết cho 3 thì a mũ 2 trừ 1 chia hết cho 6
+ Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 (1)
+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)
Nếu a = 3k + 1 thì a2 = (3k + 1).(3k + 1)
= (3k + 1).3k + (3k + 1)
= 9k2 + 3k + 3k + 1 chia 3 dư 1
Nếu a = 3k + 2 thì a2 = (3k + 2).(3k + 2)
= (3k + 2).3k + 2.(3k + 2)
= 9k2 + 6k + 6k + 4 chia 3 dư 2
=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 (2)
Từ (1) và (2), do (2;3)=1 => a2 - 1 chia hết cho 6
+ Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 (1)
+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)
Nếu a = 3k + 1 thì a2 = (3k + 1).(3k + 1)
= (3k + 1).3k + (3k + 1)
= 9k2 + 3k + 3k + 1 chia 3 dư 1
Nếu a = 3k + 2 thì a2 = (3k + 2).(3k + 2)
= (3k + 2).3k + 2.(3k + 2)
= 9k2 + 6k + 6k + 4 chia 3 dư 2
=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 (2)
Từ (1) và (2), do (2;3)=1 => a2 - 1 chia hết cho 6
Câu | đúng | sai |
a, Nếu mỗi số hạng của tổng chia hết cho 6 thì tổng chia hết cho 6 | ||
b, Nếu mỗi số hạng của tổng ko chia hết cho 6 thì tổng ko chia hết cho 6 | ||
c, Nếu tổng của hai số chia hết cho 5 và một trong hai số đó chia hết cho 5 thì số còn lại chia hết cho 5 | ||
d, Nếu hiệu của hai số chia hết cho 7 và một trong hai số đó chia hết cho 7 thì số còn lại chia hết cho 7 |
a)chứng tỏ rằng n là số tự nhiên thì B=n2 không chia hết cho 3
b)nếu n là số ko chai hết cho 3 thì n2 ko chia hết cho 3
c)tìm số tự nhiên n khi n2 chia hết cho 3
Bài 1: Chứng minh rằng
a)a^5-a chia hết cho5
b) n^3+6n^2+8n chia hết cho 48 với mọi n chẵn
c) Cho a là số nguyên tố hớn hơn 3. CMR a^-1 chia hết cho 24
d) Nếu a+b+c chia hết cho 6 thì a^3+b^3+c^3 chia hết cho 6
e)2009^2010 không chia hết cho 2010
f) n^2+7n+22 không chia hết cho 9
Bạn Quân viết ra một chữ số có ba chữ số nếu bớt số đó đi 8 đơn vị thì được 1 số chia hết cho 7 nếu bớt đi 9 đơn vị thì được 1 số chia hết cho 8 nếu bớt đi 10 đơn vị thì được 1 số chia hết cho 9 Số bạn quân viết là ?
Bài này chuẩn và đầy đủ hơn nè :
Gọi số Quân viết đã là x.
Theo đầu bài ta có :
x - 8 chia hết cho 7⇒x - 1 - 7 chia hết cho 7 mà 7 chia hết cho 7 ⇒x - 1 chia hết cho 7
x - 9 chia hết cho 8 ⇒x - 1 - 8 chia hết cho 8 mà 8 chia hết cho 8 ⇒x - 1 chia hết cho 8
x - 10 chia hết cho 9 ⇒x -1 - 9 chia hết cho 9 mà 9 chia hết cho 9 ⇒ x - 1 chia hết cho 9
⇒ x - 1 ∈ BC(7;8;9) = B( BCNN (7;8;9))
Ta có:
7 = 7 ; 8 = 23 ; 9 = 32
⇒ BC (7;8;9) = 7 . 23 . 32 = 504
⇒ x - 1 ∈ Ư(504) = { 0; 504; 1008;...}
⇒ x ∈ {1;505; 1010; ...}
Mà x có 3 chữ số nên x = 505
Vậy số bạn Quân viết là 505
nếu n là 1 stn ko chia hết cho 3 thì n2 chia cho 3 có số dư là
Tôi nghĩ ra 1 số có 3 chữ số.
Nếu bớt số tôi nghĩ đi 7 thì được số chia hết cho 7.
Nếu bớt số tôi nghĩ đi 8 thì được số chia hết cho 8.
Nếu bớt số tôi nghĩ đi 9 thì được số chia hết cho 9.
Hỏi số tôi nghĩ là số nào?
=>Số đó chia hết cho cả 7,8,9
=>Số đó là BC(7,8,9) và là số có 3 chữ số
TA có BCNN(7,8,9) là:504
Vậy số đó là 504
sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai sai
Đùa tý thôi:
504 đúng rồi
Nhưng còn thiếu bước phân tích ra thừa số nguyên tố
sai hết rồi
bài cho là bớt đi 7 thì chia hết cho 7, 8 và 9 cũng tương tự chứ có phải là số đó chia hết cho 7;8;9 đâu
Chứng tỏ rằng nếu n là số tự nhiên lẻ thì tổng T= n2+4n+5 không chia hết cho 8.
vì n lẻ =>n^2 lẻ;4n lẻ=>n^2+4n+5 lẻ.mà số lẻ không chia hết cho số chẵn=>n^2+4n+5 không chia hết cho 8=>đpcm
Tìm số tự nhiên nhỏ nhất có chín chữ số, chia hết cho 9 và có các tính chất sau:
Nếu xóa một chữ số tận cùng thì được số chia hết cho 8,
nếu xóa hai chữ số tận cùng thì được số chia hết cho 7,
nếu xóa ba chữ số tận cùng thì được số chia hết cho 6,
nếu xóa bốn chữ số tận cùng thì được số chia hết cho 5,
nếu xóa năm chữ số tận cùng thì được số chia hết cho 4,
nếu xóa sáu chữ số tận cùng thì được số chia hết cho 3,
nếu xóa bảy chữ số tận cùng thì được số chia hết cho 2.
Gọi số phải tìm là abcdeghik
Ta có ab chia hết cho 2, để nhỏ nhất ta chọn ab = 12
Ta có 12c chia hết cho 3, để nhỏ nhất ta chọn c = 0
Ta có 120d chia hết cho 4, để nhỏ nhất ta chọn d = 0
Ta có 1200e chia hết cho 5, để nhỏ nhất ta chọn e = 0
Ta có 12000g chia hết cho 6, để nhỏ nhất ta chọn g = 0
Ta có 120000h chia hết cho 7 nên h = 3
Ta có 1200003i chia hết cho 8 nên i = 2
Ta có 12000032k chia hết cho 9 nên k = 1
Vậy, số đó là 120000321