chung to rang 1/a =1/a+1=1/a(a+1) voi thuoc Z , a khac 0 va -1
Chung to rang 1/a=1/a+1+1/a*(a+1) voi a thuoc so nguyen , a khac 0, a khac -1
kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s
bai thi .....................kho..........................kho..............troi.................thilanh.............................ret..................wa.........................dau................wa......................tich....................ung.....................ho.....................cho............do.................lanh
bai 2
a)chung to rang P=4a2+4a chia het cho 8 voi moi a thuoc z
b)tim a thuoc z sao cho Q=a+7 chia het cho a (a khac 0)
c)tim a thuoc z sao cho M=a+1 chia het a -2 (a khac 2)
chung minh rang :a^2(a+1)+2a(a+1) chia het cho 6 voi a thuoc Z
A=a^2+2a^2-1/a^2+2a+2a^2+1
a, rut gon bieu thuc
b, chung to rang voi a thuoc Z thi A khong toi gian
1------- cho x,y thuoc Z .Cm rang 5x+ 47y la Boi cua 17 khi va chi khi x+6y la boi cua 17
2------- chung minh rang voi moi a thuoc Z ta co
a- (a -1)(a-2)+12 ko chia het cho 9
b- (a+2)(a+9)+21 ko chia het cho 49
cho a=1+2+3+...+n v b= 2n+1 (voi n thuoc N , n>hoac bang 2 ) . Chung minh rang a va b la 2 so nguyen to cung nhau
Ta có A = 1 + 2 +3 + ... + n
= n(n+1) : 2
lại có n(n+1) là tích chẵn
=> n(n+1) \(⋮\)2
=> a \(⋮\)2
=> a chẵn
mặt khác, 2n + 1 \(⋮̸\)2
=> 2n + 1 là số lẻ
=> b lẻ
Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1
=> chúng là 2 số nguyên tố cùng nhau
tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)
cho a khac 0 b khac 0 va a+b=1 chung minh rang \(\frac{b}{a^3-1}-\frac{a}{b^3-1}=\frac{2\left(a-b\right)}{a^2b^2+3}\)
cho bieu thuc A=3n+2/n+1(n thuoc Z;n khac -1. chung minh A la ps toi gian voi moi gia tri cua n
Gọi UCLN(3n+2,n+1) = d
Ta có: 3n+2 chia hết cho d
n+1 chia hết cho d => 3n+3 chia hết cho d
=>3n+3-(3n+2) chia hết cho d
=>1 chia hết cho d
=> d = 1
=> UCLN(3n+2,n+1) = 1
Vậy......
ta có A\(=\frac{3n+2}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{1}{n+1}=3\)\(+\frac{1}{n+1}\)
Do 1 ko chia hết cho bất kì số nào thuộc Z ngoại trừ 1 và -1
=> \(\frac{1}{n+1}\)tối giản => A tối giản
cho ti le thuc voi a,b,c,d thuoc z b,d khac 0 chung minh rang a^2 + b^2 phần c^2 + d^2 =a*b phần c*d
Đặt:a/b=c/d=k =>a=bk,c=dk
Thay vào vế trái ta có:
a^2+b^2/c^2+d^2=b^2.k^2+b^2/d^2.k^2+d^2=b^2+b^2/d^2+d^2=2b^2/2d^2=b^2/d^2(1)
Thay vào vế phải ta có:
ab/cd=b^2.k/d^2.k=b^2/d^2(2)
Từ 1 và 2 =>đpcm