Những câu hỏi liên quan
H24
Xem chi tiết
PQ
30 tháng 5 2020 lúc 15:50

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
BK
Xem chi tiết
TD
31 tháng 8 2023 lúc 21:10

Ta có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+y^2+2yz+z^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)

\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2xz+2yz\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge3^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\)

 

Bình luận (0)
NT
1 tháng 9 2023 lúc 0:22

Áp dụng Bđt Bunhiacopxki cho các cặp số dương \(\left(1;x\right);\left(1;y\right);\left(1;z\right)\) 

\(\left(1.x+1.y+1.z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow P=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{9}{3}=3\)

Dấu "=" xảy ra khi và chỉ khi \(\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\Rightarrow x=y=z=\dfrac{3}{3}=1\)

Vậy \(GTNN\left(P\right)=3\left(tạix=y=z=1\right)\)

 

Bình luận (0)
NH
Xem chi tiết
ST
Xem chi tiết
PH
Xem chi tiết
DA
Xem chi tiết
H24
29 tháng 9 2020 lúc 23:22

Ta có :

\(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{6}\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)

\(\Rightarrow2x+2y+2z=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}\)

\(\Rightarrow2\left(x+y+z\right)=1\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)-\left(x+y\right)=\frac{1}{2}-\frac{1}{2}\Rightarrow z=0\\\left(x+y+z\right)-\left(y+z\right)=\frac{1}{2}-\frac{1}{3}\Rightarrow x=\frac{1}{6}\\\left(x+y+z\right)-\left(z+x\right)=\frac{1}{2}-\frac{1}{6}\Rightarrow y=\frac{1}{3}\end{cases}}\)

Vậy \(x=\frac{1}{6},y=\frac{1}{3};z=0\) .

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 9 2020 lúc 8:49

\(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{6}\)

Ta có:\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)

\(\Leftrightarrow2\left(x+y+z\right)=1\)

\(\Leftrightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)-\left(x+y\right)=\frac{1}{2}-\frac{1}{2}=0\\\left(x+y+z\right)-\left(y+z\right)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\\\left(x+y+z\right)-\left(z+x\right)=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\end{cases}}\)

Vậy....

Bình luận (0)
 Khách vãng lai đã xóa
HC
Xem chi tiết
NT
31 tháng 7 2023 lúc 0:05

- Với \(0< x;y< 1\)

\(x^2>x^{2003}\left(1\right)\)

\(y^2>y^{2003}\left(2\right)\)

\(z^2>z^{2003}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow M=x^2+y^2+z^2>x^{2003}+y^{2003}+z^{2003}=3\)

\(\Rightarrow\) Không có giá trị max của M.

- Với \(x;y\ge1\)

\(x^2\le x^{2003}\left(1\right)\)

\(y^2\le y^{2003}\left(2\right)\)

\(z^2\le z^{2003}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow x^2+y^2+z^2\le x^{2003}+y^{2003}+z^{2003}=3\)

\(\Rightarrow Max\left(M\right)=3\left(x=y=z=1\right)\)

Bình luận (0)
GN
Xem chi tiết
H24
17 tháng 9 2017 lúc 7:14

đề thiếu bạn ơi cái này phải áp dụng tính chất dãy tỉ số bằng nhau 

Bình luận (0)
GN
17 tháng 9 2017 lúc 7:48

Bạn ơi đề bài có vậy thôi nha.

Bạn chỉ mình cách dãy tỉ số bằng nhau đc ko ạ???

Bình luận (0)