CMR: [2x] = 2[x] hoặc 2[x] + 1
Cmr: x4 - 2x3 + 2x2 - 2x + 1 > hoặc = 0 với mọi x
x4-2x3+2x2-2x+1
\(=\left(x-1\right)^4+2\left(x-1\right)^3+2\left(x-1\right)^2\ge0\) (đpcm)
1. cmr với mọi x, y ta có:
a) x^2 + 9y^2 + z^2 +19/2 >2x + 2y +4z
b) (x-1)(x-3)(x-4)(x-6) + 9 lớn hơn hoặc bằng 0
c) (x+1)(x+2)(x+3)(x+4) +1 lớn hơn hoặc bằng 0
2. tìm x, y để các biểu thức sau đạt GTNN:
A = x^4 - 2x^3 +3x^2 - 4x + 2017
B = 2x^2 + 9y^2 - 6xy - 6x - 12y + 2018
C= 1 - |1-3x| + (3x-1)^2
Trả lời nhanh giúp mk nhé!
Cho D= 8x^2 -2x -1
CMR: D> hoặc bằng -9/8 với mọi x
\(D=8x^2-2x-1\)
\(=8\left(x^2-\frac{1}{4}x-\frac{1}{8}\right)\)
\(=8\left(x^2-\frac{1}{4}x+\frac{1}{64}-\frac{9}{64}\right)\)
\(=8\left[\left(x-\frac{1}{8}\right)^2-\frac{9}{64}\right]\)
\(=8\left(x-\frac{1}{8}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\left(đpcm\right)\)
D=\(8x^2-2x+1\)
2D=(4x)^2 - 4x +2
2D= (4x)^2 - 2. 4x. 1/2 + (1/2)^2 - (1/2)^2 +2
Nhóm lại đc 1 cái mũ 2 trừ bn đó
chia 2 ra đc >= -9/8 là ĐPCM
cmr giá trị tuyệt đối x-1+giá trị tuyệt đối 2x-2+giá trị tuyệt đối 3x-3> hoặc =4
CMR 2x2+2xy+y2-2x+2y+2 lớn hơn hoặc bằng -3 với mọi x,y
<=> ( x2+2xy+y2+2x+2y+1)+(x2-4x+4)-3
=( x+y+1)2+(x-2)2 -3 >= -3
dấu = xảy ra <=> x=2 và y=-3
BT:
a,giải pt: (8x-4x^2-1)(x^2+2x+1)=4(x^2+x+1)
b,cho 2 số a,b thoả mãn a+b khác 0
CMR: a^2+b^2+(a^2+1/a+b)^2 lớn hơn hoặc bằng 2
\(\left(8x-4x^2-1\right)\left(x^2+2x+1\right)=4\left(x^2+x+1\right)\)
\(\Leftrightarrow8x^3+16x^2+8x-4x^4-8x^3-4x^2-x^2-2x-1=4x^2+4x+4\)
\(\Leftrightarrow11x^2+6x-4x^4-1=4x^2+4x+4\)
\(\Leftrightarrow11x^2+6x-4x^2-1-4x^2-4x-4=0\)
\(\Leftrightarrow7x^2+2x-4x^4-4=0\)
\(\Leftrightarrow\left(-4x^3-4x^2+3x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(-4x^2-8x-5\right)\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Giúp mk vs:
1,Tìm giá trị của x đê |2x+1|-3(x+5) bằng 8
2,Tìm giá trị của x để |2x+1|-4(x+5) bằng 10
3,CMR: a2 +b2+c2 lớn hơn hoặc bằng ab+ac+bc
. Mấy cái này dễ mà bạn
. 1) Ta có \(\left|2x+1\right|-3\left(x+5\right)=8\) (1)
. Nếu \(x\ge-\frac{1}{2}\) , pt (1) <=> \(2x+1-3x-15=8\) (Giải pt, ra kết quả của x, bạn đối chiếu với đk \(x\ge-\frac{1}{2}\) )
. Nếu \(x<-\frac{1}{2}\) , pt (1) <=> \(-2x-1-3x-15=8\) , bạn làm như trên
. Bài 2 tương tự bài 1
. 3) Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)
. \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\). Bạn nhóm hạng tử, sử dụng HĐT
. Được: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(BĐT đúng)
. => đpcm
Cho A=|2x4+3x2+9|-|-2x4-x2-9|.
CMR: A lớn hơn hoặc bằng 0 với mọi x
Ta có:\(\left|-2x^4-x^2-9\right|=\left|2x^4+x^2+9\right|\) vì ta có tính chất \(\left|a\right|=\left|-a\right|\)
Áp dụng bất đẳng thức trị tuyệt đối,ta có:
\(A=\left|2x^4+3x^2+9\right|-\left|2x^4+x^2+9\right|=\left|2x^4+4x^2+9-2x^4-x^2-9\right|=3x^2\ge0\) với \(\forall x\)
Tự tìm dấu bằng xảy ra -.-
Bài 1: CMR: Đẳng thức sau luôn nhận giá trị âm hoặc dương với mọi giá trị của biến:
a) ( x2 +2)2-( x -2). (x+2).(x2 +4)
b) -5-(x-1).(x+2)
Bài 2: Tìm giá trị nhỏ nhất của biểu thức:
a) A = 2x2 +y2- 2xy - 2x +3
b) B = (x+1).(x-2). (x-3). (x-6)
Bài 3: Cho: (a+b+c)2 = 3.(ab+bc+ac)
CMR: a=b=c.