Những câu hỏi liên quan
HH
Xem chi tiết
TD
Xem chi tiết

Sử dụng phép  đồng dư nhá bạn.

\(7\equiv7\)(mod 100)

\(7^3\equiv43\)(mod 10)

\(7^4=1\)(mod 10)

\(\left(7^4\right)^{10}\equiv1^{10}=1\) (mod 10)

\(7^{40}.7^3\equiv1.43\equiv43\)  (mod10)

Vậy .....................................

Bình luận (0)
NH
16 tháng 6 2019 lúc 19:01

ta có: 7^34=7^4.10+3=7^4.10 .7^3=(7^4)^10 .7^3=2401^10 .343=...01.343=...43

=> dpcm

Bình luận (0)
LH
Xem chi tiết
DT
Xem chi tiết
TM
Xem chi tiết
HL
30 tháng 6 2017 lúc 17:50

Sử dụng phép đồng dư nhé :v

\(7\equiv7\) (mod 100)

\(7^3\equiv43\) (mod 10)

\(7^4\equiv1\) (mod 10)

\(\left(7^4\right)^{10}\equiv1^{10}\equiv1\) (mod 10)

\(7^{40}.7^3\equiv1.43\equiv43\) (mod 10)

Vậy chữ số tận cùng của 743 là 43.

Bài này hơi khó hiểu nhỉ :vv

Bình luận (0)
CN
1 tháng 9 2017 lúc 20:51

uiiiiiiiiiiii các bn làm mk mèo hỉu j hếtoho

Bình luận (0)
CN
1 tháng 9 2017 lúc 20:52

à wên mk mới hok lớp 7leuleu

Bình luận (0)
TN
Xem chi tiết
LP
28 tháng 7 2023 lúc 21:04

 Ta sẽ chứng minh rằng với mọi \(n\inℕ\) thì \(7^{4n+3}\) luôn có 2 chữ số tận cùng là 43.   (*)

 Thật vậy, với \(n=0\) thì \(7^3=343\) có 2 chữ số tận cùng là 43.

 Giả sử khẳng định đúng đến \(n=k\), khi đó \(7^{4k+3}=\overline{a_1a_2...a_t43}=\left(100A+43\right)\)

 Với \(n=k+1\), ta có \(7^{4\left(k+1\right)+3}=7^{4k+3+4}=7^{4k+3}.7^4\) 

\(=\left(100A+43\right).2401\) 

\(=\left(100A+43\right)\left(2400+1\right)\) 

\(=240000A+100A+103200+43\)

\(=100B+43\) có 2 chữ số tận cùng là 43.

 Vậy (*) được chứng minh. Nhận thấy \(43=4.10+1\) nên \(7^{43}\) có 2 chữ số tận cùng là 43 (đpcm)

Bình luận (0)
NH
28 tháng 7 2023 lúc 21:12

743 = 73\(.\)740 = 343 .(74)10 = 343.(2401)10 = 343\(\times\).\(\overline{...01}\) =\(\overline{...43}\)(đpcm)

Bình luận (0)
NH
Xem chi tiết
TN
Xem chi tiết
NH
11 tháng 2 2017 lúc 21:08

Mình cũng chưa hiểu lắm! Để mình nghĩ đã! Mình là học sinh chuyên Toán nên sẽ nghĩ ra sơm thôi! Đợi chút nhé

Bình luận (0)
LH
11 tháng 2 2017 lúc 21:09

1)

Xét 2004 số đề kết thúc là 4 chữ số 2002 :

20022002; 200220022002 ; ...;  20022002...2002

                                               | 2005 cụm 2002 |

Có 2004 số; mà khi chia cho 2003 chỉ có thể có 2003 số dư nên theo nguyên lý Đi-ríc-lê; có ít nhất hai số có cùng số dư khi chia cho 2003; thì hiệu chúng sẽ là bội của 2003.

Gọi 2 số đó là 20022002...2002; 200220022002...2002

                     | n cụm 2002 |           |m cụm 2002|      \(\left(2\le n< m\le2005\right)\)và m,n là các số tự nhiên.

Suy ra : 

                     200220022002...2002 - 20022002...2002 chia hết cho 2003

                        | m cụm 2002 |            | n cụm 2002 |

= 20022002...200220020000000...0000  chia hết cho 2003

   | m - n cụm 2002 |     | 4n chữ số 0 |

\(\Rightarrow200220022002...2002.10^{4n}\)  chia hết cho 2003

        | m - n cụm 2002 | 

Mà (10;2003) = 1 nên (104n;2003)=1

Suy ra 200220022002...2002 chia hết cho 2003

             | m - n cụm 2002 | 

Số này kết thúc là ...2002

Bình luận (0)
LH
11 tháng 2 2017 lúc 21:16

2)

Xét 1001 số từ 45 ( vì 45 là lũy thừa nhỏ nhất của 4 có 3 chữ số )

45 ; 46 ; ...; 41005 .

Theo nguyên lý Điríclê; trong 1001 số này có ít nhất 2 số có cùng số dư khi chia cho 1000 ; tức là 2 số đó có 3 chữ số tận cùng giống nhau.

Bình luận (0)
FN
Xem chi tiết
H24
20 tháng 4 2015 lúc 20:08

mik nghĩ là 0

 

 

Bình luận (0)
NN
20 tháng 4 2015 lúc 20:10

 

4343-1717=(43.4342)-(17.1716)

=[43.(432)21]-[17.(172)8]

=[43.(...9)21]-[17.(...9)8]

=[43.(...9)]-[17.(...1)]

=(...7)-(...7)

=(...0)

=> Tận cùng 4343-1717 là 0.

Bình luận (0)