Những câu hỏi liên quan
NL
Xem chi tiết
YN
24 tháng 2 2020 lúc 9:12

a) Ta có \(\hept{\begin{cases}2^{24}=\left(2^6\right)^4=64^4\\3^{16}=\left(3^4\right)^4=81^4\end{cases}}\)

Mà \(64< 81\)

\(\Rightarrow64^4< 81^4\)

\(\Rightarrow2^{24}< 3^{16}\)

b) Ta có \(\hept{\begin{cases}2^{300}=\left(2^3\right)^{100}=8^{100}\\3^{200}=\left(3^2\right)^{100}=9^{100}\end{cases}}\)

Mà 8 < 9  

\(\Rightarrow8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

c) Ta có \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta có 71 < 2401 

\(\Rightarrow71^5< 2401^5\)

\(\Rightarrow71^5< 7^{20}\)

!! K chắc câu c

@@ Học tốt

Chiyuki Fujito

Bình luận (0)
 Khách vãng lai đã xóa
TL
24 tháng 2 2020 lúc 9:19

a) \(2^{24}=\left(2^3\right)^8=8^8\)

\(3^{16}=\left(3^2\right)^8=9^8\)

Ta thấy 8<9\(\Rightarrow8^8< 9^8\Rightarrow2^{24}< 3^{16}\)

b) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Thấy \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

c) \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta thấy \(71< 2401\Rightarrow71^5< 2401^5\Rightarrow71^5< 7^{20}\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NH
Xem chi tiết
MP
27 tháng 6 2019 lúc 10:44

\(\text{a, }2^{30}=8^{10}\)

     \(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)

\(\text{Vậy }2^{30}< 3^{20}\)

Bình luận (0)
MP
27 tháng 6 2019 lúc 10:47

\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)

     \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

\(\text{Vậy }5^{300}< 243^{100}\)

Bình luận (0)
MP
27 tháng 6 2019 lúc 10:52

\(\text{c, }2^{24}=\left(2^3\right)^8=8^8\)

     \(3^{16}=\left(3^2\right)^8=9^8\)

\(\text{Vậy ...}\)

Bình luận (0)
NH
Xem chi tiết
KN
28 tháng 6 2019 lúc 5:54

c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)

\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)

\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)

\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)

Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)

Bình luận (0)
KN
28 tháng 6 2019 lúc 6:00

a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)

Mà \(8^{10}< 9^{10}\)\(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên

\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)

hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

Bình luận (0)
KN
28 tháng 6 2019 lúc 6:50

b) Ta có: \(4^{30}=2^{30}.2^{30}=8^{10}.4^{15}\)

\(3.24^{10}=3.8^{10}.3^{10}=3^{11}.8^{10}\)

Vì \(4^{15}>3^{11}\) nên \(8^{10}.4^{15}>3^{11}.8^{10}\)

hay \(2^{30}+3^{30}+4^{30}>3.24^{10}\)

Bình luận (0)
VT
Xem chi tiết
LC
3 tháng 9 2015 lúc 20:17

\(A=\frac{17^{20}+2}{17^{20}-1}=\frac{17^{20}-1+3}{17^{20}-1}=1+\frac{3}{17^{20}-1}\)

\(B=\frac{17^{20}-2}{17^{20}-5}=\frac{17^{20}-5+3}{17^{20}-5}=1+\frac{3}{17^{20}-5}\)

Vì \(17^{20}-1>17^{20}-5\)

\(=>\frac{3}{17^{20}-1}1+\frac{3}{17^{20}-1}

Bình luận (0)
NM
Xem chi tiết
PT
Xem chi tiết
TA
7 tháng 7 2017 lúc 8:57

3^34<8^34=2^3^24=2^72

5^20>8^20=2^3^20=2^60

Vì 2^72>2^60 nên 3^34>5^20

Câu b tự làm

Bình luận (2)
SD
30 tháng 12 2017 lúc 9:11

a, 334 < 834 = ( 23 )34 = 2102

520 < 820 = ( 23 )20 = 260

Mà 2102 > 260 nên 334 > 520

b, 1720 = ( 174 )5 = 835215

Mà 715 < 835215 nên 715 < 1720

Bình luận (0)
LT
Xem chi tiết
ND
Xem chi tiết
NN
26 tháng 3 2020 lúc 18:31

a) 3200=(32)100=9100 ; 2300=(23)100=8100

=> 9100>8100 hay 3200>2300

b) 7150=(712)25=504125 ; 3775=(373)25=5065325

=> 504125<5065325 hay 7150<3775

c)rút gọn

2016014/2017015=2014/2015

2016016014/2017017015=2014/2015

=> 2014/2015 = 2014/2015

Bình luận (0)
 Khách vãng lai đã xóa