Tính nhanh:
2/3+2/15+2/35+...+2/9999
Tính nhanh A= 2/3 + 2/15 + 2/35 + 2/36 + 2/99 + ...... + 2/9999
A = \(\frac{2}{3}+\frac{3}{15}+\frac{2}{35}+.....+\frac{2}{9999}\)
A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
A = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{101}\)
A = \(1-\frac{1}{101}\)
A = \(\frac{100}{101}\)
tính nhanh
C=1-(2/3+2/15+2/35+...+2/9999)
biến đổi ra là đc
\(1-\left(\frac{2}{3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)
tới đây thôi bạn tự làm đi
\(C=1-\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\)
\(C=1-\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{99x101}\)
\(C=1-\left(\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...\frac{2}{99}-\frac{2}{101}\right)\)
\(C=1-\left(\frac{2}{1}-\frac{2}{101}\right)\)
\(C=1-\frac{200}{101}\)\(=\frac{1}{1}-\frac{200}{101}=\frac{101}{101}-\frac{200}{101}=\frac{-99}{0}\)
Tính nhanh có diễn giải.
B=2/3+2/15+2/35+2/63+...+2/9999.
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{1}{5.7}+....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}+0+0+...+0\)
\(=\frac{100}{101}\)
tinh nhanh
2/3+2/15+2/35+2/63+...+2/9999
2/3+2/15+2/35+2/63+...+2/9999
=2/1.3+2/3.5+2/5.7+...+2/99x101
=1-1/3+1/3-1/5+...+1/99-1/101
=1-1/101=100/101
\(=2\times\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(=2\times\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{99\times101}\right)\)
\(=2\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2\times\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(=2\times\frac{100}{101}\)
\(=\frac{200}{101}\)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+.....+\frac{2}{9999}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
Tính nhanh:
\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}\)
\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}\)
\(=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+...+\left(1-\frac{1}{9999}\right)\)
\(=\left(1-\frac{1}{1\cdot3}\right)+\left(1-\frac{1}{3\cdot5}\right)+\left(1-\frac{1}{5\cdot7}\right)+\left(1-\frac{1}{7\cdot9}\right)+...+\left(1-\frac{1}{99\cdot101}\right)\)
\(=\left(1+1+1+1+...+1\right)-\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
Có tất cả : (101 - 3) : 2 + 1 = 50 chữ số 1 => (1 + 1 + 1 + .... + 1) = 1 x 50 = 50
\(\Rightarrow50-\frac{1}{2}\cdot\left(1-\frac{1}{101}\right)\)
\(=50-\frac{1}{2}\cdot\frac{100}{101}=50-\frac{100}{101}=\frac{4950}{101}\)
Vậy \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}=\frac{4950}{101}\)
Tính M= 2/3+14/15+34/35+62/63+...+9998/9999
\(M=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+...+1-\frac{1}{9999}\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)(Có (99 - 1): 2+ 1 = 50 số 1)
\(M=50-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(M=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(M=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{5050-100}{101}=\frac{4950}{101}\)
Tính tổng: A =-2/15+-2/35+-2/63+-2/99+...+-2/9999
2/3 + 2/15 + 2/35 + ..... + 2/9999
Tham khảo tại link này:
https://olm.vn/hoi-dap/detail/9958347293.html
~Hok tốt~
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+....+\frac{2}{9999}\)
\(=\frac{2}{3\cdot1}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{99\cdot101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-....-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
\(\Rightarrow\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+....+\frac{2}{9999}=\frac{100}{101}\)
Ta có:
\(\frac{2}{3}+\frac{2}{15}+...+\frac{2}{9999}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
Chúc bạn học tốt !!!
Tính E=\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+...+\frac{9998}{9999}\)
\(E=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+...+\left(1-\frac{1}{9999}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{9999}\right)\)
\(=50-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
\(=50-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=50-\frac{1}{2}.\left(1-\frac{1}{101}\right)=50-\frac{1}{2}.\frac{100}{101}=50-\frac{50}{101}=\frac{5000}{101}\)