Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
BH
Xem chi tiết
H24
2 tháng 7 2021 lúc 10:12

\(\left(x+y\right)^2+4x+1\)

đây là đề bài ak?

Bình luận (0)
MH
Xem chi tiết
AH
13 tháng 8 2021 lúc 0:20

$x=5; y=-3$ thì $(x+y)^2+4x+1$ là scp mà $x\neq y$.

Bạn xem lại đề.

Bình luận (0)
AM
Xem chi tiết
KT
21 tháng 7 2018 lúc 21:51

bài của   Never_NNL   sai nhé:

  \(x+y=m+n\)   \(\Rightarrow\)\(n=x+y-m\)

Ta có:    \(A=x^2+y^2+m^2+n^2\)

\(=x^2+y^2+m^2+\left(x+y-m\right)^2\)

\(=2x^2+2y^2+2m^2+2xy-2mx-2my\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2mx+m^2\right)+\left(y^2-2my+m^2\right)\)

\(=\left(x+y\right)^2+\left(x-m\right)^2+\left(y-m\right)^2\)

Vậy A là tổng của 3 số chính phương

Bình luận (0)
H24
21 tháng 7 2018 lúc 21:40

x + y = m + n

m = x + y - n

x^2 + y^2 + ( x + y - n )^2 + n^2 

= x^2 + y^2 + ( x^2 + xy- xn ) + ( xy + y^2 - ny ) - [ ( - xn ) + ( - ny ) + n^2 ] + n^2 

= x^2 + y^2 + x^2 + xy - xn + xy + y^2 - ny + xn + ny - n^2 + n^2 

= 2x^2 + 2y^2 + 2xy 

= x^2 + y^2 + ( x^2 + y^2 + 2xy )

= x^2 + y^2 + ( x + y )^2 ( dpcm )

Bình luận (0)
AM
22 tháng 7 2018 lúc 9:12

cảm ơn 2 bạn nha

Bình luận (0)
H24
Xem chi tiết
PH
Xem chi tiết
TL
15 tháng 8 2020 lúc 20:55

đặt \(A=x^2+y^2+2x\left(y-1\right)+2y=x^2+y^2+2xy-2x+2y=\left(x+y\right)^2-2\left(x-y\right)\)

do A là số chính phương => \(\left(x+y\right)^2-2\left(x+y\right)\)cũng là số chính phương

\(\Leftrightarrow-2\left(x-y\right)=0\)

\(\Leftrightarrow x=y\)

Bình luận (0)
 Khách vãng lai đã xóa
KR
Xem chi tiết
NH
8 tháng 3 2021 lúc 12:47

đề bài có nhầm ko bạn

Bình luận (1)
ND
Xem chi tiết
H24
11 tháng 12 2022 lúc 16:45

Ta có: x2+y2+2xy-4x-2y+1=0

      ⇔(x2+y2+2xy-2x-2y+1)-2x=0

      ⇔(x+y-1)2=2x

Mà (x+y-1)2 là số chính phương

⇒2x là số chính phương

⇒2x chia 4 dư 0 hoặc 1

Mà 2x là số chẵn 

⇒2x chia hết cho 4

⇒x chia hết cho 2

⇒x là số chẵn(đpcm)

Lại có:(x+y-1)2=2x

\(\dfrac{\left(x+y-1\right)^2}{2}\)=x

\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2

\(\dfrac{\left(x+y-1\right)^2}{2}\)\(\dfrac{1}{2}\) =x:2

\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2

⇒(\(\dfrac{x+y-1}{2}\))2=x:2  

Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương

⇒x:2 là số chính phương (đpcm)

Bình luận (0)
ND
Xem chi tiết
TN
Xem chi tiết