chứng minh rằng ước bé nhất (khác 1) của một số tự nhien la một số nguyên tố
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất
Cho số tự nhiên A = a x b y c z trong đó a,b,c là các số nguyên tố đôi một khác nhau, còn x, y, z là các số tự nhiên khác 0. Chứng minh rằng số ước của A được tính bởi công thức: (x+1)(y+1)(z+1)
Số ước của A chỉ chứa thừa số nguyên tố là x thừa số, chỉ chứa thừa số nguyên tố b là y thừa số, chỉ chứa thừa số nguyên tố c là z thừa số, chỉ chứa thừa số nguyên tố ab là xy thừa số, chỉ chứa thừa số nguyên tố ac là xz thừa số, chỉ chứa thừa số nguyên tố bc là yz thừa số, chỉ chứa thừa số nguyên tố abc là xyz thừa số. Vì A là ước của chính nó, do đó số ước của A bằng:
x+y+z+xy+yz+zx+xyz+1 = x(z+1)+y(z+1)+xy(z+1)+z+1 = (z+1)(x+y+xy+1)
= (z+1)[(x+1)+y(x+1)] = (z+1)(y+1)(x+1)
Cho số tự nhiên A = a x b y c z trong đó a,b,c là các số nguyên tố đôi một khác nhau, còn x, y, z là các số tự nhiên khác 0. Chứng minh rằng số ước của A được tính bởi công thức: x + 1 y + 1 z + 1
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
Bài 1: Biết rằng số tự nhiên n có đúng 1995 ước số trong đó có 1 ước nguyên tố chẵn. Chứng minh rằng :
a. n là số chính phương
b. Chứng minh rằng n chia hết cho 4
c. n có nhiều nhất mấy ước nguyên tố
0 bít m.n tháy thế nào nhưng mk thấy bài này hay và khó
=))
Chứng minh rằng nếu một số tự nhiên A có đúng 3 ước số phân biệt thì A là bình phương của số nguyên tố.
Giả sử số \(A\)phân tích thành thừa số nguyên tố được: \(A=p_1^{x_1}p_2^{x_2}...p_n^{x_n}\)
Khi đó tổng số ước của \(A\)là \(\left(x_1+1\right)\left(x_2+1\right)...\left(x_n+1\right)\).
Mà \(3=1.3\)do đó khi phân tích ra thừa số nguyên tố \(A\)chỉ có một ước nguyên tố duy nhất, số mũ của nó là \(3-1=2\).
Khi đó \(A=p^2\).
Do đó ta có đpcm.
Chứng minh rằng các số tự nhiên. có dạng 2p+1 trong đó p là số nguyên tố, chỉ có một số là lập phương của một số tự nhiên khác. Tìm số đó
Biết số tự nhiên aaa chỉ có 3 ước khác 1. Tìm số đó?
Tìm một số nguyên tố, biết rằng số liền sau của nó cũng là một số nguyên tố?
Ta có: aaa = 111.a = 3.37.a
=> 3 ước khác 1 của aaa là: 111;3;37
b)Số 2.Liền sau 2 là 3 cũng là số nguyên tố