Những câu hỏi liên quan
PM
Xem chi tiết
H24
13 tháng 8 2019 lúc 20:46

Giả sử x;y⋮̸ 3

⇒x^2;y^2 chia 3 dư 1

⇒z^2=x^2+y^2 chia 3 dư 2 ( vô lý vì z^2 là số chính phương )

Vậy x⋮3y⋮3⇒xy⋮3

Chứng minh tương tự xy⋮4

(3;4)=1 => x.y chia hết cho 12

Bình luận (0)
TN
Xem chi tiết
HP
Xem chi tiết
AH
30 tháng 1 2023 lúc 23:53

Lời giải:
Áp dụng BĐT AM-GM:
$1=xy+yz+xz+2xyz\leq \frac{(x+y+z)^2}{3}+2.\frac{(x+y+z)^3}{27}$

$\Leftrightarrow 1\leq \frac{t^2}{3}+\frac{2t^3}{27}$ (đặt $x+y+z=t$)

$\Leftrightarrow 2t^3+9t^2-27\geq 0$

$\Leftrightarrow (t+3)^2(2t-3)\geq 0$

$\Leftrightarrow 2t-3\geq 0$
$\Leftrightarrow t\geq \frac{3}{2}$ hay $x+y+z\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=\frac{1}{2}$

Bình luận (5)
NT
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
L7
Xem chi tiết
TC
28 tháng 3 2022 lúc 22:24

refer

https://olm.vn/hoi-dap/detail/1303479279140.html

Bình luận (0)
NP
Xem chi tiết