Những câu hỏi liên quan
NH
Xem chi tiết
NM
5 tháng 8 2021 lúc 16:34

https://hoc247.net/hoi-dap/toan-7/chung-minh-dinh-ly-trong-1-tam-giac-vuong-duong-trung-tuyen-ung-voi-canh-huyen-bang-nua-canh-huyen-faq195049.html

Tham khảo nha bạn chứ mk ko biết cách chứng minh dùng đường trung bình

 

Bình luận (0)
NH
5 tháng 8 2021 lúc 16:37

đây là hình ạ

D A B M C

Bình luận (1)
MH
Xem chi tiết
TT
5 tháng 8 2015 lúc 22:07

G/s TAm giác ABC lấy M , N , Q lần lượt là trung điểm AB; AC;BC

CM AQ = MN 

Tự nghĩ tiếp đi 

 

 

 

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 11 2018 lúc 9:08

 Cách khác (theo cách lớp 7):

A B C D 2 1

Xét tam giác ABC vuông tại A,trung tuyến AD.Ta cần chứng minh: \(AD=\frac{1}{2}BC\)

Ta chứng minh ngược lại,tức là \(AD\ne\frac{1}{2}BC\)

+ Nếu \(AD>\frac{1}{2}BC\Rightarrow\widehat{B}>\widehat{A_2},AD>CD\Leftrightarrow\widehat{C}>\widehat{A}\) (Đ.lí về cạnh đối diện với góc trong tam giác)

Hay \(\widehat{B}+\widehat{C}>\widehat{A_2}+\widehat{A_1}=90^o>\widehat{A}\) (mâu thuẫn với giả thiết)

+ Chứng minh tương tự với \(AD< \frac{1}{2}BC\) được: \(\widehat{B}+\widehat{C}< \widehat{A_2}+\widehat{A_1}\Leftrightarrow90^o< \widehat{A}\) (mâu thuẫn)

Vậy ta luôn có: \(AD=\frac{1}{2}BC\) (đpcm)

Bình luận (0)

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

Bình luận (0)
H24
16 tháng 11 2018 lúc 9:11

Tham khảo thêm: Câu hỏi của Nguyễn Huỳnh Minh Thư - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
TP
Xem chi tiết
DM
Xem chi tiết
PA
30 tháng 3 2015 lúc 22:51

 theo đề ta ta có BM2+AH2+CN2 = 3/2 AC2.

ta có trong tam giác vuông đường trung tuyến cắt cạnh huyền bằng 1/2 cạnh huyền từ đó suy ra BM2=1/2 AC2 (1)

ta có: AH2 = AB2 +BH2 (vì tam giác ABH vuông tại B) = AB2+ (1/2BC)2=AB2+1/4BC2 (do AH là trung tuyến BC) (2)

tương tự ta có CN2= BC2 +BN2=BC2+1/4AB2 (3)

lấy (2)+(3) ta có AB2+1/4BC2+BC2+1/4AB2=5/4 AB2+5/4 BC2 = 5/4 AC2(4)

lấy (1)+(4) đó chính là điều ta cần chứng minh

ảnh minh họa về bài toán

Bình luận (0)
NT
Xem chi tiết
TD
9 tháng 1 2018 lúc 17:59

A B C D M 1 2 1

trên tia đối của tia MA lấy điểm D sao cho MD = MA 

xét  \(\Delta AMB\)và \(\Delta DMC\)có :

MB = MC ( gt )

\(\widehat{M_1}=\widehat{M_2}\)( hai góc đối đỉnh )

MA = MD ( do cách vẽ )

Suy ra : \(\Delta AMB\)\(\Delta DMC\)( c.g.c )

Suy ra : AB = AC và \(\widehat{A_1}=\widehat{D}\) \(\Rightarrow\)AB // CD ( vì có cặp góc sole trong bằng nhau )

vì \(AC\perp AB\)( gt ) nên AC \(\perp\)CD ( quan hệ giữa tính song song và vuông góc )

Xét \(\Delta ABC\)và \(\Delta CDA\)có :

AB = CD ( chứng minh trên )

\(\widehat{A}=\widehat{C}=90^o\)

AC ( chung )

Vậy \(\Delta ABC\)\(\Delta CDA\)( c.g.c ) suy ra BC = AD

vì \(AM=MD=\frac{AD}{2}\)nên \(AM=\frac{BC}{2}\)

Bình luận (1)
HH
Xem chi tiết
NP
16 tháng 12 2017 lúc 23:48

  1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp. 
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC 
=> AO là đường trung tuyến ứng với cạnh huyền 
=> OA = OB =OC = 1/2 BC 
=> O là tâm của đường tròn ngoại tiếp tam giác ABC 
Vậy .... 
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác. 
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC 
=>OA = OB =OC (*) 
mà BC là đường kính của đường tròn ngoại tiếp 
=> O là trung điểm BC 
=> OB = OC = 1/2 BC(**) 
từ (*) và (**) => OA = OB = OC = 1/2 BC 
=> tam giác ABC vuông tại A 

Bình luận (0)
NN
20 tháng 2 2018 lúc 10:14

@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?

Bình luận (0)
NN
20 tháng 2 2018 lúc 10:26

1> Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.

=>MA=MH=1/2AH(*)

\(\Delta AMC=\Delta BMH\left(c.g.c\right)\)

=>\(\widehat{CAM}=\widehat{BHM}\)và AC=BH

Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH

=> AC // BH

mà AC L AB => BH L AB => \(\widehat{ABH}=90^o\)

Xét \(\Delta ABC\)\(\Delta BAH\)

AC=BC

\(\widehat{BAC}=\widehat{ABH}=90^o\)

cạnh chung AB

=> \(\Delta ABC=\Delta BAH\left(c.g.c\right)\)

=> BC=AH(**)

Lại có MB=MC=1/2BC(***)

Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)

Bình luận (1)
TT
Xem chi tiết