Cho A = 5 + 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^2014 + 5^2015. Tìm số dư khi chia số A cho 26
Cho số A = 5 + 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^2014 + 5^2015. Tìm số dư khi chia số A cho 26.
a, Tìm số dư khi chia tổng A=2013^n + 2014^n + 2015^n cho 2, với n là STN
b, Cho B=5+5^2+5^3+...+5^2015. Tìm STN n biết 4.B+5=5^n
tìm số dư của phép chia A cho 13 biết :
A=5+5^2+5^3+...+5^2014+5^2015
Lời giải:
$A=5+5^2+5^3+(5^4+5^5+5^6+5^7)+(5^8+5^9+5^{10}+5^{11})+...+(5^{2012}+5^{2013}+5^{2014}+5^{2015})$
$=(1+5+5^2+5^3)+5^4(1+5+5^2+5^3)+5^8(1+5+5^2+5^3)+...+5^{2012}(1+5+5^2+5^3)-1$
$=(1+5+5^2+5^3)(1+5^4+5^8+...+5^{2012})-1$
$=156(1+5^4+...+5^{2012})-1$
$=13.12(1+5^4+...+5^{2012})-1$
$\Rightarrow A$ chia $13$ dư $-1$
Hay $A$ chia $13$ dư $12$
1.Chứng tỏ:
A-9+9^2+9^3+...+9^100 CHIA HẾT CHO 91
2.so sánh A và B
Biết A=2015^2001 ;B=2014^2000+2014^2001
3.tìm chữ số tận cùng của
A= 2^1+2^2+2^3+...+2^20
4.chứng minh A= 2^1+2^2+2^3+2^4+...+2^2016 chia hết cho6
5.A= 5^0+5^1+5^2+...+5^2002 chia cho 31 dư bao nhiêu?
6.Cho A= (-1)+2+(-3)+4+(-5)+6+....+(-2007)+2008+(-2009)+2010.Chứng minh A chia hết cho 5
7.tìm số dư khi chia số A=7^1+7^2+7^3+...+7^2013
8.tìm 2 số tự nhiên a,b biết a-b = 279 . Khi chia achio b thì được thương là 5 dư 3
9.Cho A=3^ 2013-11^671 . Chứng minh A chia hết cho2
Help me . Mai em nộp rồi. Em hiểu là đề hơi dài nhưng giúp em nhé. Xinh cảm ơn trước ạ!!!
cho A=5+ 5 mũ 3+5 mũ 5+ ....+5 mũ 2015.
Tìm số dư của A÷26.
Chứng tỏ A chia hết cho 2017.
số dư của A = 2017^2016 - 2015 ^2014 khi chia cho 5
20174n có tận cùng là 1 ; 2015n có tận cùng là 5.
Ta có: A = 20172016-20152014 = 20174.504-20152014 = (...1)-(...5) = (...6)
A có chữ số tận cùng là 6 nên khi chia A cho 5 sẽ dư 1
cho a= 5^50- 5^48+5^46-5^44+...+5^6-5^4+5^2-1 a. tìm a b. tìm số tự nhiên n biết 26.A+1= 5^n c. tìm số dư trong phé chia a cho 100
Câu 1: Cho S = 5 + 52 + 53 + .........+ 52006
a, Tính S
b, Chứng minh S ⋮ 26
Câu 2. Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1; chia cho 4 dư 2 ; chia cho 5 dư 3;
chia cho 6 dư 4 và chia hết cho 11.
Câu 1 :
a) Ta có : S=5+52+53+...+52006
5S=52+53+54+...+52007
\(\Rightarrow\)5S-S=(52+53+54+...+52007)-(5+52+53+...+52006)
\(\Rightarrow\)4S=52007-5
\(\Rightarrow S=\frac{5^{2007}-5}{4}\)
b) Ta có : S=5+52+53+...+52006
=(5+53)+(52+54)+...+(52004+52006)
=5(1+52)+52(1+52)+...+52004(1+52)
=5.26+52.26+...+52004.26\(⋮\)26
Vậy S\(⋮\)26
Câu 2 :
Gọi số cần tìm là : a. Điều kiện : a\(\in\)N*.
Vì a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3 và chia cho 6 dư 4 nên ta có ; a-1\(⋮\)3 ; a-2\(⋮\)4 ; a-3\(⋮\)5 và a-4\(⋮\)6
\(\Rightarrow\)a-1+3\(⋮\)3 ; a-2+4\(⋮\)4 ; a-3+5\(⋮\)5 ; a-4+6\(⋮\)6
\(\Rightarrow\)a+2 chia hết cho cả 3, 4, 5 và 6
\(\Rightarrow\)a+2\(\in\)BC(3,4,5,6)
Ta có : 3=3
4=22
5=5
6=2.3
\(\Rightarrow\)BCNN(3,4,5,6)=22.3.5=60
\(\Rightarrow\)BC(3,4,5,6)=B(60)={0;60;120;180;240;300;...}
\(\Rightarrow\)a\(\in\){-2;58;118;178;238;298;358;418;...}
Mà theo đề bài, a nhỏ nhất và chia hết cho 11
\(\Rightarrow\)a=418
Vậy số cần tìm là 418
a) tìm số tự nhiên có ba chữ số lớn nhất mà khi chia số đó cho 4 dư 3, chia 5 dư 4, chia 6 dư 5
b) tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2; 3; 4; 5; 6 đều dư 1 và khi chia cho 7 thì không dư