Chứng tỏ rằng các số 12976 ; 15000 ; 1010 + 8 và 496728 là hợp số
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng tỏ rằng các số 12976; 15000; 1010+ 8 và 496728 là hợp số.
Vì 12976 là số chẵn nên \(⋮2\Rightarrow\)12976 là hợp số.
Vì 15000 là số chẵn nên \(⋮2\Rightarrow\)15000 là hợp số.
Vi \(10^{10}+8\)là số chẵn nên \(⋮2\Rightarrow\)\(10^{10}+8\)là hợp số.
Vì 496728 là số chẵn nên \(⋮2\Rightarrow\)496728 là hợp số.
12976 chia hết cho 2 nên nó là hợp số.
15000 chia hết cho 2;3;5 nên nó là hợp số.
1010 + 8 có tận cùng là 0 + 8 = 8 chia hết cho 2 nên nó là hợp số.
496728 chia hết cho 2 nên nó là hợp số.
P/s:Lũy thừa có cơ số bằng 10 thì luôn có tận cùng bằng 0.
Chứng tỏ rằng các số sau là hợp số :
12976 ; 15000 ; 1010+8
Vì 12976 chia hết cho 2, 12976 > 2
=> 12976 là hợp số
15000 chia hết cho 2, 15000 > 2
=> 15000 là hợp số
10^10+8 chia hết cho 2, 10^10 +8 > 2
=> 10^10+8 là hợp số
Vì cả ba số 12976;15000;1010+8 đều có chữ số tận cùng là số chẵn => các số đó chia hết cho 2 và các số 12976;15000;1010+8 đều là các số tự nhiên lớn hơn 2
BÀI 1 :Chứng tỏ rằng các số 12976 ; 15000; 10 mũ 10+8; 496728 là hợp số
Bài 2 :viết số 34 thành tổng của 2 số nguyên tố
bài 3 :viết số 32 dưới dạng thành tổng của 3 số nguyên tố
HUHU GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP NHANH NHANH MÌNH TK CHO
CÁM MƠN
12976 chia hết cho 2 nên nó là hợp số.
15000 chia hết cho 2;3;5 nên nó là hợp số.
1010 + 8 có tận cùng là 0 + 8 = 8 chia hết cho 2 nên nó là hợp số.
496728 chia hết cho 2 nên nó là hợp số.
P/s:Lũy thừa có cơ số bằng 10 thì luôn có tận cùng bằng 0.
Bài 1:
Vì 12976 là số chẵn nên chia hết cho 2, => 12976 là hợp số.
Vì 15000 là số chẵn nên chia hết cho 2, => 15000 là hợp số.
Vì 1010 + 8 là số chẵn nên chia hết cho 2, => 1010 + 8 là hợp số.
Vì 496728 là số chẵn nên chia hết cho 2, => số này là hợp số,
Câu 1: các số đó đều chia hết cho 2,4,1 và chính nó nên là hợp số.
Câu 2: 34= 23+11
Câu 3: 32=2+11+19
Bài 1 : Hãy viết dạng tổng quát của các số tự nhiên lẻ.
Bài 2 : Chứng minh rằng: Tổng của hai số tự nhiên lẻ thì chia hết cho 2.
Bài 3 : Chứng tỏ rằng các số sau là hợp số : 1010 + 8 ; 496728 ; 12976 ; 15000
Bài 4 : Chứng minh rằng các tổng hoặc hiệu sau là hợp số :
1/ 15 + 17 3/ 7.9 + 14.5
2/ 3.4 - 12.17 4/ 3.4.5 + 6.7
5/ 7.9.11 + 13.17
Bài 5 : Phân tích các số sau ra thừa số nguyên tố : 12 ; 15 ; 24 ; 32 ; 46 ; 98 ; 120 ; 127 ; 214 ; 275 ; 312 ; 450 ; 900 ; 2100 ; 3060 ; 24255 ; 62475
1. Dạng tổng quát 2k+1
2.gọi 2 số tự nhiên lẻ là a và b. ta có a=2k+1, b=2k' +1
khi đó a+b= 2(k+k')+2 luôn luôn chia hết cho 2
Bài 1: 2.k+1
Bài 2: Tổng của hai số tự nhiên lẻ có tận cùng là các số chẵn => tổng hai số tự nhiên lẻ thì chia hết cho 2
12976 chia hết cho 2 nên nó là hợp số.
15000 chia hết cho 2;3;5 nên nó là hợp số.
1010 + 8 có tận cùng là 0 + 8 = 8 chia hết cho 2 nên nó là hợp số.
496728 chia hết cho 2 nên nó là hợp số.
P/s:Lũy thừa có cơ số bằng 10 thì luôn có tận cùng bằng 0.
Cho p và p+4 là các số nguyên tố (p>3). chứng tỏ rằng p+8 là hợp số.
Chứng tỏ rằng các số có dạng abcabc( có gạch ngang trên đầu ) chia hết cho ít nhất 3 số nguyên tố.
Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!
Câu 1:
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+2
=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)
=>p=3k+1
=>p+8=3k+1+8=3k+9 là hợp số (đpcm)
Câu 2:
Ta có: abcabc=abc.1001=abc.7.11.13
Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Phần 1 bạn Kun làm rồi. Mình làm tiếp phần 2.
\(\overline{abcabc}=\overline{abc}\cdot1001=7\cdot11\cdot13\cdot\overline{abc}\)
Vậy \(\overline{abcabc}\)chia hết ít nhất cho 3 số nguyên tố là 7;11;13.
Cho p và p+4 là các số nguyên tố (p>3). chứng tỏ rằng p+8 là hợp số.
Chứng tỏ rằng các số có dạng abcabc( có gạch ngang trên đầu ) chia hết cho ít nhất 3 số nguyên tố.
Chứng tỏ rằng các số 31, 211, 3201, 10031 là các số nguyên tố
Dể thấy 31 = 30 + 1
= 1.2.3.5 + 1
Số 31 không chia hết các số nguyên tố 2, 3, 5 ma 52 = 25 < 35 là ước nguyên tố lớn nhất mà 52 < 31
Suy ra 31 là số nguyên tố
Các số khác ta củng chứng minh tương tự.
Cho p , p+ 6 , p+8 , p+12 là các số nguyên tố. Chứng tỏ rằng p + 4 là hợp số .
Cho a là SNT > 3. Chứng tỏ rằng (a-1) . (a+4) chia hết cho 6
Cho p là SNT > 3 . Chứng tỏ rằng (p-1) . (p+1) chia hết cho 24
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
a) cho a thuộc Z, chứng tỏ rằng a + |a| là số chẵn
b) chứng tỏ rằng không tồn tại các số nguyên x,y,z sao cho: | x - 2y| + |4y - 5z| + |x - 3x| = 2011
a) Xét :
\(a< 0\)\(\Rightarrow|a|=-a\)
\(\Rightarrow a+|a|=a+\left(-a\right)=0\)(là số chẵn)
\(a\ge0\)\(\Rightarrow|a|=a\)
\(\Rightarrow|a|+a=a+a=2a\)(luôn chẵn với mọi a nguyên)
Vậy ta có đpcm
b) Phần b) chỗ dấu giá trị tuyệt đối thứ 3 có phải là z-3x không ạ ?
Gỉa sử tồn tại các số nguyên x,y,z thỏa mãn đề bài .
Ta có : \(\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)=-2x+2y-4z\)(là một số chẵn)
Áp dụng cm ở phần a), ta có:
\(|x-2y|+\left(x-2y\right)+|4y-5z|+\left(4y-5z\right)+|z-3x|+\left(z-3x\right)\)là 1 số chẵn
\(\Rightarrow|x-2y|+|4y-5z|+|z-3x|\)là một số chẵn
Mà \(2011\)là số lẻ
\(\Rightarrow\)Mẫu thuẫn với giả thiết
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrowđpcm\)