Cho A = 1/5 + (2/5)2 + (3/5)3 + ... + (10/5)10 + (11/5)11.Chứng minh A<5/16
1.Chứng minh rằng: √2 + √6 +√12 + √20 < 12
2. Cho A=1/5+2/(5^2)+3/(5^3)+......+10/(5^10)+11/(5^11). Chứng minh rằng A < 5/16
cho A = 1/5 + 2/52 + 3/53 + ..........+10/510 + 11/511 . chứng minh A < 5/16
Cho A=1 phần 5 +2 phần 5 mũ 2+3 phần 5 mũ 3+...+10 phần 5 mũ 10+11 phần 5 mũ 11.chứng minh A nhỏ hơn 5 phần 16
Cho A=\(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+....+\dfrac{10}{5^{10}}+\dfrac{11}{5^{11}}\). Chứng minh A<\(\dfrac{5}{16}\)
Cho A=1/5+2/5^2+3/5^3+...+10/5^10+11/5^11 . CM A<5/16
giải hộ mk .Mk đang cần gấp
Cho A=\(\frac{1}{5}\)+\(\frac{2}{5^2}\)+\(\frac{3}{5^3}\)+...+\(\frac{10}{5^{10}}\)+\(\frac{11}{5^{11}}\).Chứng minh A<\(\frac{5}{16}\)
giải bài này hộ mk nha
Cho A= \(\frac{1}{5}\)+\(\frac{2}{5^2}\)+\(\frac{3}{5^3}\)+....+\(\frac{10}{5^{10}}\)+\(\frac{11}{5^{11}}\).Chứng minh A<\(\frac{5}{16}\)
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)
\(\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+....+\frac{10}{5^9}+\frac{11}{5^{10}}\)
\(\Rightarrow5A-A=\left(1+\frac{2}{5}+...+\frac{11}{5^{10}}\right)-\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)\)
\(\Rightarrow4A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)(1)
Đặt \(B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
\(\Rightarrow5B=5+1+\frac{1}{5}+...+\frac{1}{5^9}\)
\(\Rightarrow5B-B=\left(5+1+...+\frac{1}{5^9}\right)-\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)\)
\(\Rightarrow4B=5-\frac{1}{5^{10}}< 5\)
\(\Rightarrow B< \frac{5}{4}\)(2)
Thay (2) vào (1) \(\Rightarrow4A< \frac{5}{4}-\frac{11}{5^{11}}< \frac{5}{4}\)
\(\Rightarrow A< \frac{5}{16}\left(đpcm\right)\)
Bài 1 : Chứng minh rằng :
a, ( 5 + 5^2 + 5^3 + .... + 5^100 ) chia hết cho 10
b, (1 + 3 + 3^2 + .... + 3^99 ) chia hết cho 40
c, ( 19^5^2003 + 8^2004 + 5.7^2003 ) chia hết cho 10
d, ( 2^2.n - 1 ) chia hết cho 5
e, ( 19^2005 + 11^2004 ) chia hết cho 10
a) 5+52+53+54+...+5100
= (5+52)+(53+54)+...+(599+5100)
= 30+52.(5+52)+...+598.(5+52)
= 30+52.30+...+598.30
= 30.(1+52+...+598)
Vì 30 chia hết cho 10
=> 30.(1+52+...+598) chia hết cho 10
=> 5+52+53+...+5100 chia hết cho 10
Chứng minh rằng
a,5^5 - 5^4 + 5^3 chia het cho 7
7^6 : 7^5 - 7^4 chia het cho 11
10^6 - 5^7 chia het cho 59
10^9 + 10^8 10^7 chia het 22
3 + 2 +3 + 2 chia het cho 10 n thuoc n*