tìm gtnn của A=căn(x-2 (căn x-3))
tìm gtnn của A=căn(x-2 (căn x-3))
Bài 1: Tìm GTNN của biểu thức: căn x(căn x-2)/ 1+ căn x
Bài 2: Tìm GTLN của biểu thức: căn x+3/4x
Tìm GTNN của A=căn (x-1) + căn (2x-2) + căn (3x-3) + 15
GTNN của A = 15 \(\Leftrightarrow\)x = 1
1) So sánh A và B:
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
B = căn bậc hai của 196 - 1/căn bậc hai của 6
2) Tìm GTNN của A = 2 + căn bậc hai của x
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
Ai nhanh nhất mình tick nha! Làm ơn giải giùm nhaaaaaaaaaaaaaaaaaaaaaaaa!
bạn bấm mấy tính là đc chứ j
**** nha bn
**** nha
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
Tức là :
\(\sqrt{244}\)và \(\sqrt{4}\)
tất nhiên ........
B = căn bậc hai của 196 - 1/căn bậc hai của 6
Tất nhiên ......
2) Tìm GTNN của A = 2 + căn bậc hai của x
\(A=2+\sqrt{x}\)
= \(\sqrt{x+2}\)
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
\(B=5-2.\sqrt{x-1}\)
= \(4-2\sqrt{x}\)
B1, Cho x, y>0 thỏa mãn x+y=4/3. Tìm gtnn của A=3/x+1/3y
B2, Cho x,y,z thỏa mãn x2 + 2y2 + 10z2= 2015. Tìm gtnn của K= 2xy - 8yz - 2zx
B3, Cho x>=3. Tìm gtnn của M=x + 1/x2
B4, Cho a,b,c >0 thỏa mãn a+b+c=3. Tìm gtln của S=căn (3a+bc) + căn (3b+ca) + căn (3c+ab)
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
cho p= [(3/x-1)+(1/ căn x +1)] : 1/căn x +1
a) tìm dkxd, rút gọn p
b) tìm giá trị p khi x=3+ 2 căn 2
c) tìm giá trị của x để p<0
d) tìm gtnn của M= (x+12/ căn x -1)*1/p
Tìm GTNN của:
1) A= căn bậc hai của(x+1) + căn bậc hai của(y-2) biết x+y=4
2) B= (căn bậc hai của(x-1)/x) + (căn bậc hai của(y-2)/y)
3) x + căn bậc hai của(2-x)
1) Tìm x thuộc Z thỏa mãn
a)Căn x-2 < 3
b)Căn x+5 < 9 - căn 4x+20
Tìm GTNN của
A= Căn x2-6x+9 + căn x2-12x+36
B= x - 4* căn x-3 +10
cách tìm gtnn của p= căn (x^2 -2xa+a^2) + căn (x^2 -2xb+b^2)
\(p=\sqrt{x^2-2xa+a^2}+\sqrt{x^2-2xb+b^2}\)
\(=\sqrt{\left(x-a\right)^2}+\sqrt{\left(x-b\right)^2}\)
\(=\left|x-a\right|+\left|x-b\right|\)
\(=\left|x-a\right|+\left|b-x\right|\ge\left|x-a+b-x\right|=\left|b-a\right|\)
Dấu \(=\)khi \(\left(x-a\right)\left(b-x\right)\ge0\).