Cho 3 số nguyên x,y,z có tổng chia hết cho 6
Cmr: Biểu thức M=(x+y)(y+z)(z+x)-2xyz chia hết cho 6
cho 3 số nguyên x,y,z có tổng chia hết cho 6
CMR biểu thức M = (x+y)(y+z)(z+x) - 2xyz chia hết cho 6
ai làm đúng và nhanh nhất mình sẽ tick cho nha :D
---------
Nếu cả 3 số x, y, z đều không chia hết cho 2 thì x+y+z không chia hết cho 2 (vô lý)
Ta có: x+y+z ⋮ 6 ⋮ 2
Do đó trong ba số tồn tại một số chia hết cho 2, suy ra xyz ⋮ 2.
Ta có:
M=(x+y)(y+z)(z+x)−2xyz=(x+y+z)(xy+yz+zx)−3xyz
Vì x+y+z ⋮ 6 và xyz ⋮ 2 nên M ⋮ 6
Tick nha
Nếu cả 3 số x, y, z đều không chia hết cho 2 thì
x+y+z không chia hết cho 2 (vô lý)
Ta có: x+y+z ⋮ 6 ⋮ 2
Do đó trong ba số tồn tại một số chia hết cho 2,
suy ra xyz ⋮ 2.
Ta có:
M=(x+y)(y+z)(z+x)−2xyz=(x+y+z)(xy+yz+zx)−3xyz
Vì x+y+z ⋮ 6 và xyz ⋮ 2
nên M ⋮ 6
Cho x,y.z là các số nguyên và x+y+z chia hết cho 6 CMR.(x+y)(y+z)(z+x)-2xyz chia hết cho 6
Cho ba số nguyên x,y,z thỏa mãn điều kiện x+y+z chia hết cho 6. Chứng minh rằng biểu thức
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\) chia hết cho 6
Có: \(x+y+z⋮6\)
\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)
\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)
\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)
\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)
Ta có:\(x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\)x+y+z là số chẵn.
\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn
\(\Rightarrow xyz⋮2\)
\(\Rightarrow3xyz⋮6\)
\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))
đpcm
Cho C= (x+y+z)(xy+yz+zx)-xyz
a) Phân tích C thành nhân tử
b) Cho x, y, z là 3 số nguyên có tổng chia hết cho 6 Chứng minh (x+y)(y+z)(z+x)-2xyz chia hết cho 6
a/ \(C=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
b/ Ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz\)
Vì \(x+y+z⋮6\)
Nên trong 3 số x, y, z có ít nhất 1 số chẵn
\(\Rightarrow3xyz⋮6\)
\(\Rightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz⋮6\)
Cho 3 số nguyên x, y, z có tổng chia hết cho 6.
Chứng minh: M = (x + y)(y + z)(x + z) - 2000xyz chia hết cho 6
cho x, y, z là các số nguyên thỏa mãn: x+y+z chia hết cho 6. CM: M= (x+y)(x+z)(y+z) -2xyz chia hết cho 6
Cho x,y,z là các số nguyên thoả mãn x+y+z chia hết 6
Chứng minh: (x+y)(y+z)(x+z)-2xyz chia hêt 6
a, Cho ba số nguyên x,y,z thỏa mãn điều kiện x+y+z chia hết cho 6 . Chứng minh rằng giá trị của các biểu thức
M = (x+y)(y+z)(z+x) -2xyz cũng chia hết cho 6
b, Cho hai số thực x,y dương thỏa mãn:x+y >= 4
Tìm GTNN của biểu thức S=\(\frac{9x}{2}\)+2y +\(\frac{12}{x}\)+\(\frac{2}{y}\)
Cho x,y,z là các sô nguyên thoả mãn \(x+y+z\)chia hết cho 6
Chứng minh \(M=\left(x+y\right)\left(x+z\right)\left(y+z\right)-2xyz\)chia hết cho 6
Ta có:\(M=\left(x+y\right)\left(x+z\right)\left(y+z\right)-2xyz\)
\(=\left(x^2+xz+xy+yz\right)\left(y+z\right)-2xyz\)
\(=x^2y+x^2z+xyz+xz^2+xy^2+xyz+y^2z+yz^2-2xyz\)
\(=x^2y+x^2z+xz^2+xy^2+y^2z+yz^2\)
\(=\left(x^2y+xy^2+xyz\right)+\left(y^2z+yz^2+xyz\right)+\left(z^2x+zx^2+xyz\right)-3xyz\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+y+z\right)-3xyz\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)-3xyz\)
Vì \(\left(x+y+z\right)\left(xy+yz+xz\right)⋮6\)
Giả sử:Trg 3 số x,y,z không tồn tại số nào chẵn
=> x+y+z lẻ mà 1 số lẻ không chia hết cho 6 nên điều g/s sai
=> tồn tại ít nất 1 trong 3 số x,y,z chẵn
Giả sử: x chẵn
=> x chia hết cho 2 => 3xyz chia hết cho 6
=> đpcm