Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
H24
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 3 2022 lúc 15:46

a, \(A=\left(-\dfrac{2}{3}x^2y\right)\left(-\dfrac{3}{5}x^2y^3\right)=\dfrac{2}{5}x^4y^4\)

b,Thay x = -1 ; y = 2 ta được \(\dfrac{2^5}{5}=\dfrac{32}{5}\)

 c, \(B=\dfrac{2}{5}x^4y^4-x^4y^4-3=-\dfrac{3}{5}x^4y^3-3< 0\)

Vậy B luôn nhận gtr âm 

Bình luận (1)
LM
Xem chi tiết
NL
30 tháng 6 2021 lúc 18:29

\(TH1:\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3< 0\\-\dfrac{3}{5}x^3y^4< 0\\\dfrac{1}{2}xy^3>0\end{matrix}\right.\)

\(TH2:\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3>0\\-\dfrac{3}{5}x^3y^4>0\\\dfrac{1}{2}xy^3>0\end{matrix}\right.\)

\(TH3:\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3>0\\-\dfrac{3}{5}x^3y^4< 0\\\dfrac{1}{2}xy^3< 0\end{matrix}\right.\)

\(TH4:\left\{{}\begin{matrix}x< 0\\y>0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3< 0\\-\dfrac{3}{5}x^3y^4>0\\\dfrac{1}{2}xy^3< 0\end{matrix}\right.\)

Vậy ....

Bình luận (0)
HA
Xem chi tiết