Những câu hỏi liên quan
H24
Xem chi tiết
TA
6 tháng 8 2017 lúc 20:02

Cần c/m: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge3\sqrt{2}\)

Mặt khác \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\left(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\right)\ge9\)

Nên ta chỉ cần c/m  \(P=\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\le\frac{9}{3\sqrt{2}}=\frac{3\sqrt{2}}{2}\)

Ta có

\(P.\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{\left(a+b\right).2}}+\frac{1}{\sqrt{\left(b+c\right).2}}+\frac{1}{\sqrt{\left(c+a\right).2}}\)

\(=\sqrt{\frac{1}{a+b}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{b+c}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{c+a}}.\sqrt{\frac{1}{2}}\)

\(\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{c+a}+\frac{1}{2}\right)\)

\(=\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\frac{3}{4}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)+\frac{3}{4}\)

\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{4}=\frac{1}{4}.3+\frac{3}{4}=\frac{3}{2}\)

Suy ra  \(P\le\frac{3}{2}:\frac{1}{\sqrt{2}}=\frac{3\sqrt{2}}{2}\)

BĐT được c/m

Đẳng thức xảy ra  \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
NA
Xem chi tiết
TT
6 tháng 8 2020 lúc 10:06

Áp dụng bất đẳng thức Cosi, ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:

\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)

Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:

\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)

\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)

\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)

\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)

\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

Bình luận (0)
 Khách vãng lai đã xóa
TT
6 tháng 8 2020 lúc 10:07

sửa đề thành \(a^2+b^2+c^2=3\) nhé

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
KN
3 tháng 6 2020 lúc 16:34

Ta có: \(a^2-ab+3b^2+1=\left(a^2-2ab+b^2\right)+ab+\left(b^2+1\right)+b^2\)

\(=\left(a-b\right)^2+ab+\left(b^2+1\right)+b^2\ge ab+2b+b^2\)

\(=b\left(a+b+2\right)\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{1}{\sqrt{b\left(a+b+2\right)}}\)(1)

Tương tự: \(\frac{1}{\sqrt{b^2-bc+3c^2+1}}\le\frac{1}{\sqrt{c\left(b+c+2\right)}}\)(2); \(\frac{1}{\sqrt{c^2-ca+3a^2+1}}\le\frac{1}{\sqrt{a\left(c+a+2\right)}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3) và sử dụng AM - GM kết hợp liên tục BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta được:

\(P\le\frac{1}{\sqrt{b\left(a+b+2\right)}}+\frac{1}{\sqrt{c\left(b+c+2\right)}}+\frac{1}{\sqrt{a\left(c+a+2\right)}}\)

\(=\Sigma\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)\(\le\Sigma\left(\frac{1}{4b}+\frac{1}{a+b+2}\right)\)(AM - GM)

\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{​​}\Sigma\left(\frac{1}{a+b+2}\right)\)

\(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{​​}\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}\right)+\frac{1}{2}\right]\)

\(\le\frac{3}{4}+\text{​​}\left[\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\text{​​}\Sigma\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)\right]\)

\(=\frac{3}{4}+\text{​​}\left[\frac{3}{8}+\text{​​}\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]\le\frac{3}{4}+\frac{3}{8}+\frac{3}{8}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
KN
3 tháng 6 2020 lúc 17:00

Dòng thứ 10 sửa lại cho mình là \(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{2}\right)\right]\)

Do olm có lỗi là mỗi lần bấm dấu ngoặc là số nó tự động nhảy ra ngoài

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
11 tháng 6 2020 lúc 11:12

Cách khác

Ta đi chứng minh \(\sqrt{ab+3b^2+1}\ge\frac{a+5b+2}{4}\)

\(\Leftrightarrow16\left(ab+3b^2+1\right)\ge\left(a+5b+2\right)^2\)

\(\Leftrightarrow13\left(a-b\right)^2+10\left(b-1\right)^2+2\left(a-1\right)^2\ge0\)  ( luôn đúng )

Khi đó \(P\le\frac{4}{a+5b+2}+\frac{4}{b+5c+2}+\frac{4}{c+5a+2}\)

\(\le\frac{1}{a+b+2}+\frac{1}{4b}+\frac{1}{b+c+2}+\frac{1}{4c}+\frac{1}{c+a+2}+\frac{1}{4a}\)

\(\le\frac{1}{16}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}+6\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\le\frac{12}{16}+\frac{3}{4}=\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NA
Xem chi tiết
PA
2 tháng 8 2017 lúc 9:52

Đề: Cho a, b, c, d là 4 số dương thoả mãn abcd = 1. Chứng minh rằng: \(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\ge8\)

~ ~ ~ ~ ~

Áp dụng BĐT AM - GM, ta có:

\(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\)

\(\ge2\sqrt[4]{\left(1+a\right)\left(1+b\right)}\times2\sqrt[4]{\left(1+c\right)\left(1+d\right)}\)

\(=4\sqrt[4]{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)

\(\ge4\sqrt[4]{2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}\times2\sqrt{d}}\)

\(=4\sqrt[4]{16\sqrt{abcd}}\)

= 8 (đpcm)

Dấu "=" xảy ra khi a = b = c = d = 1

Bình luận (0)
DN
Xem chi tiết
TH
Xem chi tiết