So sánh 333444 với 444 333
tick mình mình tick lại
so sánh 333 mũ 444 với 444 mũ 333
bn có lúc nào
gũi lời đâu mà
k làm chi
lúc bn mình
k bn rùi
bn toàn nói
là chưa k
\(333^{444}>444^{333}\)
chuc bn hoc gioi!
nhae
~~~~~~~~~
~~~~~~~~~~~
So sánh 333444 và 444333 . Ai giải giùm với ạ
Ta có: 333444 = (3334)111
444333= (4443)111
Hai số đã có cùng số mũ, giờ ta so sánh 3334 với 4443
3334 = (3.111)4=34.1114=81.1114
4443= (4.111)3=43.1113=64.1113
Rõ ràng ta thấy: 81.1114>64.1113=>3334>4443
Từ đó suy ra: 333444>444333
K nha! Kb nha!
ta có:
\(333^{444}=333^{4\cdot111}=12296370321^{111}\)
\(444^{333}=444^{3\cdot111}=87528384^{111}\)
=>\(333^{444}>444^{333}\)
tk mk nhé
Ta có : 333444 = ( 3.111 )444 = 3444.111444
444333 = ( 4.111 )333 = 4333.111333
Ta lại có : 3444 = ( 34 )111 = 81111
4333 = ( 43 )111 = 64111
Vì 81111 > 64111 nên 3444 > 4333
Mà 111444 > 111333 => 3444.111444 > 4333.111333
Hay 333444 > 444333
So sánh: A=333^444 và B=444^333
Giúp mk với moi người ơi!!
TA CÓ : 333444= 3334.111=(3334)111=12296370321111 (1)
444333=4443.111=(4443)111=87528384111 (2)
TỪ (1) VÀ (2) => 333444 > 444333
\(A=333^{444}=111^{444}.3^{4.111}=111^{444}.81^{111}\)
\(B=444^{333}=111^{333}.4^{3.111}=111^{333}.64^{111}\)
Ta thấy *)444>333 nên \(111^{444}>111^{333}\)(1)
*)81>64 nên \(81^{111}>64^{111}\)(2)
Từ (1) và (2) suy ra \(111^{444}.81^{111}>111^{333}.64^{111}\)
Vậy A>B
ta co
A =333^444=(333^4)111va B =(444^3)111
ta duoc 333^4>444^3
suy ra A>B
vay A > B
so sánh 333^444 và 444^333
Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
\(333^{444}\)và \(444^{333}\)
Ta có:
\(\Rightarrow\)\(333^{444}=\left(333^4\right)^{111}\)
\(\Rightarrow\)\(444^{333}=\left(444^3\right)^{111}\)
111 đã có cùng số mũ nên ta so sánh \(\left(333^4\right)\)và \(\left(444^3\right)\)ta đc:
\(\Rightarrow\)\(333^4=\left(3.111\right)^4=3^4.111^4=81.111^4\)
\(\Rightarrow\)\(444^3=\left(4.111\right)^3=4^3.111^3=64.111^3\)
Vì: \(81.111^4>61.111^3\)
\(\Rightarrow\)\(333^{444}>444^{333}\)
so sánh: -333^444 và -444^333
Ta có: \(81=3^4>4^3=64\)
\(\Rightarrow4^3\cdot111^3< 3^4\cdot111^3< 3^4\cdot111^4\)
\(\Rightarrow444^3< 333^4\)
\(\Rightarrow\left(444^3\right)^{111}< \left(333^4\right)^{111}\)
\(\Rightarrow444^{333}< 333^{444}\)
\(\Rightarrow-333^{444}< -444^{333}\)
so sánh 333^444 và 444^333
Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
333^444 và 444^333 so sánh
\(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}\)
\(444^{333}=\left(111.4\right)^{333}=111^{333}.4^{333}\)
mà \(3^{444}=3^{4.111}=81^{111}\)
\(4^{333}=4^{3.111}=64^{111}\)
ta có : \(111^{444}>111^{333}\)
\(81^{111}>64^{111}\)
\(\Rightarrow333^{444}>444^{333}\)
Ta có: \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}\)
Ta lại có: \(3^{444}=\left(3^4\right)^{111}=81^{111}\)
\(4^{333}=\left(4^3\right)^{111}=64^{111}\)
\(\Rightarrow3^{444}>4^{333}\left(81^{111}>64^{111}\right)\)
Mặt khác: \(111^{444}>111^{333}\)
\(\Rightarrow3^{444}.111^{444}>4^{333}.111^{333}\)
Vậy \(333^{444}>444^{333}\)
so sánh
333^444 và 444^333
giúp mình với mai phải nộp rồi
\(333^{444}=\left(333^4\right)^{111}=\left(111^4.81\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}=\left(111^3.64\right)^{111}\)
Dễ thấy \(111^4.81>111^3.64\)
\(\Rightarrow333^{444}>444^{333}\)
So sánh 333^444 và 444^333
ta có : 333444 = (3334)111
444333 = (4443)111
Ta so sánh: 3334 và 4443
Khi đó: 3334 = (3.111)4 = 34.1114 =81.1113
4443 = (4.111)3 = 43.1113 =64.1113
81.1113 > 64.1113
=> 333444 > 444333