Những câu hỏi liên quan
NH
Xem chi tiết
TV
17 tháng 7 2021 lúc 11:19

a=230+22020+4n=415+41010+4n=415(1+4995+4n-15) mà 415 là số cp suy ra (1+4995+4n-15)là số cp

ta có: 1+4995+4n-15=22n-30+2.21989+1=(22n-30+1)2

đề 1+4995+4n-15=(2n-15)2+2.21989+1=(2n-15+1)2 là số cp thì n-15=1989 suy ra n=1974

nếu sai thì sorry bạn nha

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
DH
20 tháng 6 2021 lúc 16:45

\(A=4^{27}+4^{2016}+4^n\)

Với \(n\ge27\)

\(A=4^{27}\left(1+4^{1989}+4^{n-27}\right)\)

\(A\)là số chính phương suy ra \(B=4^{n-27}+4^{1989}+1\)là số chính phương. 

\(B=\left(2^{n-27}\right)^2+2^{3978}+1\)

\(=\left(2^{3977+n-4004}\right)^2+2.2^{3977}+1\)

Với \(n=4004\)thì: 

\(B=\left(2^{3977}\right)^2+2.2^{3977}+1=\left(2^{3977}+1\right)^2\)là số chính phương.

Với \(n>4004\)thì: 

\(B>\left(2^{3977+n-4004}\right)^2\)

\(B< \left(2^{3977+n-4004}\right)^2+2.2^{3977+n-4004}+1\)

\(=\left(2^{3977+n-4004}+1\right)^2\)

Suy ra \(\left(2^{3977+n-4004}\right)^2< B< \left(2^{3977+n-4004}+1\right)^2\)do đó \(B\)không là số chính phương. 

Vậy giá trị lớn nhất của \(n\)là \(4004\).

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
H24
28 tháng 2 2021 lúc 11:32

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

Bình luận (1)
H24
28 tháng 2 2021 lúc 11:34

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

Bình luận (0)
PL
Xem chi tiết
PL
30 tháng 1 2022 lúc 18:16

hello

Bình luận (0)
LT
Xem chi tiết
NG
Xem chi tiết
DD
12 tháng 2 2017 lúc 14:06

số cần tìm là 3

Bình luận (0)
LK
Xem chi tiết
VS
14 tháng 2 2017 lúc 16:58

3 bạn nhé!

Bình luận (0)