Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
KZ
Xem chi tiết
H24
7 tháng 12 2018 lúc 23:17

a, \(\left(a+1\right)^2\ge4a\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)

b, Áp dụng bđt Cô-si

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

                                                               \(=8\sqrt{abc}=8\)(ĐPCM)

Dấu "=" khi a = b = c =1

Bình luận (0)
LD
7 tháng 12 2018 lúc 23:22

a, \(\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1>4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)

b, Áp dụng bất đẳng thức trên ta có :

( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)

mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)

Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.

Khi đó : a + 1 > \(2\sqrt{a}\)

Tương tự ta có : 

b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)

=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)

Bình luận (0)
DK
Xem chi tiết
TL
16 tháng 12 2016 lúc 15:02

a) Có: \(\left(a-1\right)^2\ge0,\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\)

=>đpcm

b) Áp dụng bđt trên ta có:

\(\left(a+1\right)^2\ge4a\) (1)

\(\left(b+1\right)^2\ge4b\) (2)

\(\left(c+1\right)^2\ge4c\) (3)

Nhân vế vs vế (1) ; (2);(3) ta đc:

\(\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a\cdot4b\cdot4c=64abc=64\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)

Bình luận (1)
VH
29 tháng 7 2017 lúc 8:55

a) Theo Caucy thì: a2+b2>= 2ab.

=>(a+1)2=a2+1+2a>=4a

Bình luận (0)
VH
29 tháng 7 2017 lúc 9:00

b) Theo Cauchy thì : a+b>=2\(\sqrt{ab}\)

 

Bình luận (0)
TH
Xem chi tiết
NT
14 tháng 4 2017 lúc 22:40

a)

(a+1)2​​>=4a

<=> a2 +2a+1>=4a

<=>a2 -2a+1>=0

<=>(a-1)2>=0 với mọi a

Mà các phép biến đổi trên tương đương

=> đpcm

Bình luận (0)
H24
22 tháng 9 2019 lúc 20:11

Áp dụng BĐT ở câu a)

\(\left(a+1\right)^2\ge4a\Leftrightarrow\sqrt{\left(a+1\right)^2}\ge\sqrt{4a}\)

Mà a dương nên \(BĐT\Leftrightarrow a+1\ge2\sqrt{a}\)

Chứng minh tương tự: \(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)

Bình luận (0)
PK
Xem chi tiết
QH
2 tháng 8 2015 lúc 11:35

a) (a-1)^2 >= 0 <=> a^2 - 2a + 1 >= 0 <=> a^2 + 2a + 1 > 4a <=> (a+1)^2 >= 4a

b) Áp dụng bđt trên: \(\left(a+1\right)^2\ge4a\Leftrightarrow\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)

\(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\) Do a > 0 nên a+1>0. Vậy |a+1| = a + 1

Khi đó: a+1 >= 2 căn a

Tương tự ta có b+1 >= 2 căn b và c+1 >= 2 căn c

=> (a+b)(b+a)(c+1) >= 8 căn abc = 8

 

Bình luận (0)
KZ
7 tháng 12 2018 lúc 23:10

9. a) Xét hiệu : (a + 1)\(^2\) – 4a = a\(^2\) + 2a + 1 – 4a = a\(^2\)– 2a + 1 = (a – 1)\(^2\) ≥ 0.

Bình luận (0)
HA
Xem chi tiết
OP
26 tháng 7 2016 lúc 21:25

\(\left(a+1\right)^2\ge4a\)

\(=a^2+2a+1\ge4a\)

\(=a^2+2a+1-4a\ge0\)

\(=a^2-2a+1\ge0\)

\(=\left(a-1\right)^2\ge0\)( luôn đúng )

\(\Rightarrow\left(a+1\right)^2\ge4a\)( đúng ) 

Bình luận (0)
H24
Xem chi tiết
DH
18 tháng 6 2017 lúc 12:38

a )Ta có : \(\left(a-1\right)^2\ge0\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a^2+2a+1\right)-4a\ge0\)

\(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)

\(\Rightarrow\left(a+1\right)^2\ge4a\) (đpcm)

b ) Áp dụng bất đẳng thức Cosi ta có :

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\) (đpcm)

( Dấu "=" xảy ra <=> a = b = c = 1 )

Bình luận (0)
NT
Xem chi tiết
MC
Xem chi tiết
H24
Xem chi tiết
KD
25 tháng 2 2022 lúc 18:40

ấn vào ô báo cáo

Bình luận (0)
 Khách vãng lai đã xóa
PA
25 tháng 2 2022 lúc 22:31

Tối quá, ko thấy bài đâu 

HT

Bình luận (0)
 Khách vãng lai đã xóa