bạn nào hướng dẫn giúp mình làm sao tính min và max và bất đẳng thức cô-si
Bất đẳng thức Cô si Có số âm không ạ
* Các bạn ghi cho mình và hệ quả hay là những phần kiến thức về phần này với nhá
Lấy ví dụ và giúp mình từng phần về BĐT Cô si này nhá
bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng
Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau
a)
Áp dụng bđt côsi ta có:
\(\Rightarrow\) (1)
\(\Leftrightarrow\) (1)
Từ (1) và (2) \(\Rightarrow\) (ĐPCM)
Đẳng thức xảy ra \(\Leftrightarrow\) .
các bạn cho mình hỏi bất đẳng thức cô-si như nào mai mình thi rồi
Bất đẳng thức Cosi là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của 2 số thực a, b không âm: a+b2≥ab−−√
Dấu bằng xảy ra khi và chỉ khi a = b
rồi với 3 số thực a, b, c không âm: a+b+c3≥abc−−−√3
Dấu bằng xảy ra khi và chỉ khi a = b = c
rồi với 4 số thực a, b, c, d không âm: a+b+c+d4≥abcd−−−−√4
Dấu bằng xảy ra khi và chỉ khi a = b = c = d
Với n số thức không âm x1,x2,x3,…xn: x1+x2+x3+…+xnn≥x1x2
bài 1:cho \(x\ge2\).Tìm min \(A=x+\frac{1}{x^2}\)
(ÁP DỤNG KỸ THUẬT DÙNG ĐIỂM RƠI-BẤT ĐẲNG THỨC CÔ-SI)
các bạn giúp mình với
Bài làm:
Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)
\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)
Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)
Học tốt!!!!
Bất đẳng thức Cô - si là gì
Cách chứng minh bất đẳng thức Cô - si tối giản nhất ?
mk ko ghõ đc
Chắc do lỗi rồi
Câu trả lời của bạn đã được quản trị viện duyệt rồi nhé
HT
Cho ví dụ về bất đẳng thức Cô - si AGMT và giải
Chịu
tui lớp 4. Ông lớp 9. Giải bằng cái nịt. Search google rồi còn không làm được. Trời ơi!!! 🙄
ko phải lớp 9 đâu ban à lớp 12 đó
Cho hai số a, b, không âm. Chứng minh: a + b 2 ≥ a b (Bất đẳng thức Cô-si cho hai số không âm). Dấu đẳng thức xảy ra khi nào?
Vì a ≥ 0 nên √a xác định, b ≥ 0 nên b xác định
Ta có: a - b 2 ≥ 0 ⇔ a - 2 a b + b ≥ 0
⇒ a + b ≥ 2 a b ⇔ a + b 2 ≥ a b
Dấu đẳng thức xảy ra khi a = b.
Chứng minh bất đẳng thức Cô-si với n số không âm.
1) chứng minh bất đẳng thức Bu-nhi-a-cốp-ski với bộ n số.
Ai nhanh mình tick!^_^
tìm 1 số bài toan áp dụng bất đẳng thức cô si và bun hia cốp ki
bunhiacopxki:
CM (ax+by)^2<hoặc bằng(a^2+b^2)(x^2+y^2)
Dầu bằng xảy ra <=>a/x=b/y
nếu ko giải đc nhắn tin cho mk mk giải cho muốn thêm đề thì cũng hỏi mình
Cho x, y thuộc N sao cho x+y=2017
Tìm GTLN của S=x.y (áp dụng bất đẳng thức cô si
Tham khảo thử đúng không nha mn
Áp dụng bất đẳng thức cô si cho hai số dương ta có
\(x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow xy\le\dfrac{2017^2}{4}=\dfrac{4068289}{4}\)
Dấu " = " xảy ra khi: \(x=y=\dfrac{2017}{2}=1008,5\)
Vậy GTLN của tích xy là \(\dfrac{4068289}{4}\) khi \(x=y=1008,5\)