Những câu hỏi liên quan
MT
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
AN
25 tháng 7 2017 lúc 15:25

a/ \(\left(x-y\right)\left(z-x\right)\left(z-y\right)\)

b/ \(\left(1-y\right)\left(y-x\right)\)

Bình luận (0)
PA
25 tháng 7 2017 lúc 15:30

a. \(\left(x-y\right)\left(z-x\right)\left(z-y\right)\)

b. \(\left(1-y\right)\left(y-x\right)\)

Bình luận (0)
QB
17 tháng 8 2021 lúc 20:46

a. (x−y)(z−x)(z−y)(x−y)(z−x)(z−y)

b. (1−y)(y−x)

Bình luận (0)
QN
Xem chi tiết
GT
12 tháng 7 2021 lúc 10:31
Phân tích đa thức (x^2 + y^2 + z^2)(x + y + z)^2 + (xy + yz + zx)^2 thành nhân tử

phân tích đa thức thành nhân tử đặt biến phụ

(x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2

  Theo dõi Vi phạm          VDO.AIToán 8 Bài 6Trắc nghiệm Toán 8 Bài 6Giải bài tập Toán 8 Bài 6Trả lời (1)   Bùi Xuân Chiến

(x+ y+ z2)(x + y + z)2 + (xy + yz +zx)2

= (x+ y+ z2)(x+ y+ z+ 2xy +2yz +2zx) + (xy + yz + zx)2

= (x+ y+ z2)(x2 + y2 + z2) + (x+ y2 + z2)(2xy + 2yz + 2zx) + (xy + yz +zx)2

= (x+ y2 + z2)2 + 2(x+ y2 + z2)(xy + yz + zx) + (xy + yz + zx)2

= (x2 + y2 + z+ xy + yz + zx)2

Đảm bảo ko phân tích tiếp đc nữa đâu ^^, đây tuy ko phải cách đặt biến phụ nhưng cách này chắc ngắn hơn cách đặt biến phụ.

  bởi Bùi Xuân Chiến 
Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
KY
16 tháng 9 2019 lúc 19:36

\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)

\(=xy^2-xz^2+yz^2-x^2y+zx^2-zy^2\)

\(=xy^2-xz^2+yz^2-x^2y+zx^2-zy^2-xyz+xyz\)

\(=\left(yz^2-xz^2-xyz+x^2z\right)-\left(zy^2-xyz-xy^2+x^2y\right)\)

\(=z\left(yz-xz-xy+x^2\right)-y\left(zy-xz-xy+x^2\right)\)

\(=\left(z-y\right)\left(yz-xz-xy+x^2\right)\)

\(=\left(z-y\right)\left[y\left(z-x\right)-x\left(z-x\right)\right]\)

\(=\left(z-y\right)\left(y-x\right)\left(z-x\right)\)

Bình luận (0)
PT
Xem chi tiết
PH
19 tháng 7 2018 lúc 21:17

Bài này dùng cách đặt ẩn phụ. Nhiều bài lớp 8 phải làm vậy. Mong bạn hiểu được cách giải.

Đặt x^2 +y^2 +z^2 =a , xy+yz+zx =b

Ta có: (x^2 +y^2 +z^2)(x+y+z)^2 +(xy+yz+zx)^2

= a (x^2 +y^2 +z^2 +2xy +2yz +2xz) +b^2

= a (a+2b)+ b^2

= a^2 + 2ab+ b^2

= (a+b)^2

= (x^2 +y^2 +z^2 +xy+yz+zx)^2

Chúc bạn học tốt.

Bình luận (0)
TA
Xem chi tiết
LN
Xem chi tiết
MT
22 tháng 7 2015 lúc 8:37

A ) xy(z+y)+yz(y+z)+zx(z+x)

=y.[x(z+y)+z(y+z)]+zx(z+x)

=y.(xz+xy+zy+z2)+zx(z+x)

=y.(xz+z2+xy+zy)+zx(z+x)

=y.[z.(z+x)+y.(z+x)]+zx(z+x)

=y.(z+x)(z+y)+zx(z+x)

=(z+x)[y(z+y)+zx]

=(z+x)(yz+y2+zx)

B )xy(x+y)-yz(y+z)-zx(z-x)

=y.[x(x+y)-z(y+z)]-zx(z-x)

=y.(x2+xy-zy-z2)-zx(z-x)

=y.(x2-z2+xy-zy)-zx(z-x)

=y.[(x+z)(x-z)+y.(x-z)]-zx(z-x)

=y.(x-z)(x+z+y)+zx(x-z)

=(x-z)[y(x+z+y)+zx]

=(x-z)(yx+yz+y2+zx)

=(x-z)(yx+zx+yz+y2)

=(x-z)[x.(y+z)+y.(y+z)]

=(x-z)(y+z)(x+y)

 

Bình luận (0)
LT
30 tháng 6 2021 lúc 9:52

b. \(\text{ xy(x+y)-yz(y+z)-xz(z-x) =xy(x+y+z-z)+yz(y+z)+xz(x-z) =xy(x-z)+xy(y+z)+yz(y+z)+xz(x-z) =(x+y)(y+z)(x-z) }\)

Bình luận (0)
WF
Xem chi tiết
LC
26 tháng 9 2019 lúc 16:43

\(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2-\left(xy+yz+zx\right)^2\left(1\right)\)

Đặt \(x^2+y^2+z^2=a\)

\(xy+yz+zx=b\Rightarrow2\left(xy+yz+zx\right)=2b\)

\(\Rightarrow a+2b=\left(x+y+z\right)^2\)

Kết hợp (1) ta được : \(A=a\left(a+2b\right)+b^2\)

                                      \(=a^2+2ab+b^2\)

                                     \(=\left(a+b\right)^2\)

                                      \(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)

Bình luận (0)