abc + acc + dbc = bcc. Tìm a; b; c
abc+acc+dbc=bcc. Tìm số abcd
abc+acc+dbc=bcc (đk : 0 < a ; d ; b < 10
=> abc+a00+dbc=b00
=> bc+bc=2xbc chia hết cho 100
mà 0 < bc <= 99
=> 0 < 2bc < 200
Vậy bc=50
Thay vào ta có :
a50+a00+d50=500
=>a00+a00+d00=400
=> 2xa+d=4
Vì a và d khác 0 nên a=1 và d=2.
Vậy abcd = 1502
tìm a , b , c , d :
abc + acc + dbc = bcc
(abc) + (acc) + (dbc) = (bcc) (a, b, d > 0) => (abc) + (dbc) = (bcc) - (acc) = (b - a)*100
=> (a + d)*100 + 2*(bc) = (b - a)*100 => 2*(bc) = (b - 2a - d)*100 chia hết cho 100
=> (bc) = 50 => 5 - 2a - d = 1 => d = 2(2 - a) > 0 => a = 1 => d = 2
Vậy (abcd) = 1502
Tìm chữ số thích hợp của a ; b ; c ; d
abc + acc + dbc = bcc
Câu hỏi của Vũ Phương Linh - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé!
Tìm a, b, c, d để đc phép tính đúng biết:
abc + acc + dbc = bcc
Câu hỏi của Vũ Phương Linh - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé!
abc+acc+dbc=bcc
giải mã đề bài.
Vì chữ số B không thể là 0 (vì BCC không thể bắt đầu bằng 0), chúng ta có thể xác định B = 1. Với B = 1, phương trình trở thành AC1 + ACC + DC1 = 1CC. Tiếp theo, chúng ta có thể thử từng giá trị của A và C để tìm ra giá trị của D. Khi A = 2 và C = 3, ta có 231 + 232 + D21 = 123. 231 + 232 + D21 = 123 686 + D21 = 123 D21 = 123 - 686 D21 = -563 Tuy nhiên, giá trị của D không thể là một số âm, vì vậy không có giải pháp cho phương trình này. Vì vậy, phương trình ABC + ACC + DBC = BCC không có giải pháp.
abc+acc+dbc=bcc (đk : 0 < a ; d ; b < 10
=> abc+a00+dbc=b00
=> bc+bc=2xbc chia hết cho 100
mà 0 < bc <= 99
=> 0 < 2bc < 200
Vậy bc=50
Thay vào ta có :
a50+a00+d50=500
=>a00+a00+d00=400
=> 2xa+d=4
Vì a và d khác 0 nên a=1 và d=2.
Vậy abcd = 1502
Tìm a, b, c, d để đc phép tính đúng biết: abc + acc + dbc = bcc
b) abc + acc + dbc = bcc
c + c + c = 3*c có số tận cùng là c -> c = 0 hay c =5
* Xét c =5 -> ab5 + a55 + db5 = b55
b + 5 + b = 2*b + 5 + 1 (nhớ 1 do 3*5)= 2*b + 6 = số tận cùng 5 ( 15)=> 2*b = 9 ( loại )
* Xét c = 0 -> ab0 + a00 + db0 = b00
b + 0 + b = 2*b = số tận cùng là 0 ( 10) => b = 5
+ a50 + a00 + d50 = 500
a + a + d + 1= 2*a + d + 1= 5 => 2* a + d = 4 =>a = 1; d = 2
=> 150 + 100 + 250 = 500
tim abcd .biet abc + acc +dbc = bcc
??????????????????????
tìm abcd , biết rằng : abc + acc + dbc = bcc
Cách dài :
a b c
a c c
d b c
—----
b c c
Nhìn theo hàng đơn vị: c + c + c → c tức là c nhân 3 được một số tận cùng là c. Có 3 trường hợp:
a) 3c = c (tức là không có số nhớ) ⇒ c = 0
b) 3c = 10 + c (tức là nhớ 1) ⇒ c = 5
c) 3c = 20 + c (tức là nhớ 2) ⇒ c = 10 (loại)
(Không có TH nào khác vì 3 số có-một-chữ-số cộng lại tối đa là 27)
Nếu c = 0 (không nhớ):
----Nhìn hàng chục: b + 0 + b → 0. Tương tự trên có 3 TH:
a) 2b = 0 ⇒ b = 0 (loại vì kết quả của phép cộng là bcc nên b > 0)
b) 2b = 10 ⇒ b = 5 (nhớ 1)
c) 2b = 20 ⇒ b = 10 (loại)
----Nhìn hàng trăm: a + a + d + 1 = 5 ⇒ 2a + d = 4 ⇒ a < 4/2 = 2 ⇒ a = 1 (vì a > 0 và d > 0) ⇒ d = 2 ⇒ abcd = 1502
Nếu c = 5 (nhớ 1):
----Nhìn hàng chục: b + 5 + b + 1 → 5. Tương tự trên có 3 TH:
a) 2b + 6 = 5 ⇒ b < 0 (loại)
b) 2b + 6 = 15 ⇒ b không nguyên (loại)
c) 2b + 6 = 25 ⇒ b không nguyên (loại)
Vậy có duy nhất một số thỏa mãn đề bài là abcd = 1502
Cách ngắn :
(abc) + (acc) + (dbc) = (bcc) (a, b, d > 0) => (abc) + (dbc) = (bcc) - (acc) = (b - a)*100
=> (a + d)*100 + 2*(bc) = (b - a)*100 => 2*(bc) = (b - 2a - d)*100 chia hết cho 100
=> (bc) = 50 => 5 - 2a - d = 1 => d = 2(2 - a) > 0 => a = 1 => d = 2
Vậy (abcd) = 1502
abc +acc +dbc =bcc
Tìm số thick hợp.Ở trên đầu có dấu gạch ngang nhé các bạn
Mình làm cách hơi trẻ trâu ( nguồn : yahoo )
a c c
d b c
—----
b c c
Nhìn theo hàng đơn vị: c + c + c → c tức là c nhân 3 được một số tận cùng là c. Có 3 trường hợp:
a) 3c = c (tức là không có số nhớ) ⇒ c = 0
b) 3c = 10 + c (tức là nhớ 1) ⇒ c = 5
c) 3c = 20 + c (tức là nhớ 2) ⇒ c = 10 (loại)
(Không có TH nào khác vì 3 số có-một-chữ-số cộng lại tối đa là 27)
Nếu c = 0 (không nhớ):
----Nhìn hàng chục: b + 0 + b → 0. Tương tự trên có 3 TH:
a) 2b = 0 ⇒ b = 0 (loại vì kết quả của phép cộng là bcc nên b > 0)
b) 2b = 10 ⇒ b = 5 (nhớ 1)
c) 2b = 20 ⇒ b = 10 (loại)
----Nhìn hàng trăm: a + a + d + 1 = 5 ⇒ 2a + d = 4 ⇒ a < 4/2 = 2 ⇒ a = 1 (vì a > 0 và d > 0) ⇒ d = 2 ⇒ abcd = 1502
Nếu c = 5 (nhớ 1):
----Nhìn hàng chục: b + 5 + b + 1 → 5. Tương tự trên có 3 TH:
a) 2b + 6 = 5 ⇒ b < 0 (loại)
b) 2b + 6 = 15 ⇒ b không nguyên (loại)
c) 2b + 6 = 25 ⇒ b không nguyên (loại)
Vậy có duy nhất một số thỏa mãn đề bài là abcd = 1502