Những câu hỏi liên quan
PB
Xem chi tiết
CT
29 tháng 6 2017 lúc 6:22

∀ k ta có: k.k! = ( k+1 )! - k!

ta có:

  u n = 2 ! - 1 ! + 3 ! - 2 ! + . . n + 1 ! - n ! n + 1 ! = 1 - 1 n + 1 !

Vậy lim n → ∞ u n = 1

Đáp án A

Bình luận (0)
MY
Xem chi tiết
KK
15 tháng 11 2015 lúc 17:06

254

Tick ủng hộ nhé !!!

Bình luận (0)
IA
Xem chi tiết
HN
Xem chi tiết
VL
20 tháng 9 2019 lúc 19:49

Với n=1 (tính tay ra) đúng 
Với n=2 (tính tay ra) đúng 
Với n=3 (tính tay ra) đúng. 
Giả sử phương trình trên đúng với n=k, nếu nó cũng đúng với n=k+1 thì phương trình đúng. 
1.1! + 2.2!+...+k*k!=(k+1)!-1 (theo giả thiết trên). 
Phải chứng minh:1.1! + 2.2!+...+k*k! + (k+1)*(k+1)!=(k+1+1)!-1 
<=> (k+1)!-1+(k+1)*(k+1)!=(k+2)!-1 
<=> (k+1)! + (k+1)*(k+1)!=(k+2)! 
<=>(k+1)!*(1+k+1)=(k+2)! 
<=>(k+2)!=(k+2)! Điều này luôn đúng. 
Vậy đẳng thức đã được chứng minh.

Bình luận (0)
NT
Xem chi tiết
TT
Xem chi tiết
DH
Xem chi tiết
AH
20 tháng 2 2019 lúc 23:27

Lời giải:
\(S=1.1!+2.2!+3.3!+...+n.n!\)

\(=(2-1).1!+(3-1).2!+(4-1).3!+...+(n+1-1).n!\)

\(=2.1!-1!+3.2!-2!+4.3!-3!+...+(n+1)n!-n!\)

\(=2!-1!+3!-2!+4!-3!+....+(n+1)!-n!\)

\(=(2!+3!+...+(n+1)!)-(1!+2!+....+n!)\)

\(=(n+1)!-1\)

Bình luận (0)
HM
Xem chi tiết
VT
Xem chi tiết