A và A.2 là 2 số tự nhiên có tổng các chữ số bằng nhau.Chứng minh rằng A chia hết cho 9
Các số tự nhiên a và 6a có tổng các chữ số bằng nhau.Chứng minh a chia hết cho 9
Vì a và 6a có tổng các chữ số bằng nhau nên a đồng dư với 6a (mod 9)
=>6a-a chia hết cho 9
=>5a chia hết cho 9
=>a chia hết cho 9
Cho hai số tự nhiên a và 4a có tổng các chữ số bằng nhau.Chứng minh rằng a chia hết cho 3.
Gọi tổng các chữ số của a và 4a là y
=> a và y có cùng số dư trong phép chia cho 3 => (a-y) chia hết cho 3
=> 4a và y có cùng số dư trong phép chia cho 3 => (4a-y) chia hết cho 3
=> (4a-y) - (a-y) = 4a-y-a+y chia hết cho 3 => 3a chia hết cho 3 => a chia hết cho 3
một số tự nhiên a và 5 lần số đó có tổng các chữ số như nhau.Chứng minh rằng a chia hết cho 9
hai số tự nhiên a và 4a có tổng chữ số bằng nhau.chứng minh rằng a chia hết cho 3
Bạn vào câu hỏi này nhé !
Câu hỏi của sakura - Toán lớp 6 - Học toán với OnlineMath
cho 2 số tự nhiên a và 4a có tổng các chữ số bằng nhau.Chứng minh a chia hết cho 3
1-Cho 1 số tự nhiên a và 5a có tổng các chữ số như nhau.chứng minh rằng a chia hết cho 9
2- cho a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7. Điều ngược lại có đúng hay không?
3-chứng minh rằng ( 1005a+ 2100b) chia hết cho 15 với mọi a,b thuộc N
2-
Ta có:
a+5b chia hết cho 7
=>10.(a+5b) chia hết cho 7
=>10a+50b chia hết cho 7
Nếu 10a+b chia hết cho 7 thì 10a+50b-(10a+b) bchia hết cho 7
=>49b chia hết cho 7 (đúng)
Vì vậy 10a+b chia hết cho 7
CM điều ngược lại đúng
Ta có:
10a+b chia hết cho 7
=>5.(10a+b) chia hết cho 7
=>50a+5b chia hết cho 7
Nếu a+5b chia hết cho 7 thì (50a+5b)-(a+5b) chia hết cho 7
=>49a chia hết cho 7 (đúng)
Vậy điều ngược lại đúng
Vì a và 5a có tổng các chữ số như nhau
=> a và 5a có cùng số dư khi chia cho 9
=> 5a - a chia hết cho 9
=> 4a chia hết cho 9
Mà ƯCLN(4,9) = 1
=> a chia hết cho 9 (đpcm)
Hai số tự nhiên a và 2a đều có tổng các chữ số giống nhau.Chứng minh a chia hết cho 9
vì tổng các chữ số có cùng dư khi chia cho 9
và a và 2a có tổng các chữ số giống nhau nên a và 2a có cung dư khi chia cho 9
Đặt a=9q+r
2a=9k+r
(q,k,r thuộc N; k>q)
=>2a-a=a=(9k+1)-(9q+r)
=9k+r-9q-r
=9(k-q) chia hết cho 9
=> a chia hết cho 9 (ĐPCM)
Tìm 1 số tự nhiên a và 5 lần số đó có tổng các chữ số như nhau.Chứng minh a chia hết cho 9
vì a và 5a có tổng các chữ số bằng nhau nên 5a và a có cùng số dư khi chia cho 9
=>5a - a chia hết cho 9
=> 4a chia hết cho 9
=> a chia hết cho 9 vì ƯCLN (4,9)=1(ĐPCM)
Cho 2 số tự nhiên a và 2a đều có tổng các chữ số bằng k. Chứng minh rằng: a chia hết cho 9
đề ra mập mờ quá
a và 2a
thế 2a là 2.a hay là 2a nói chung hiểu kiểu gì cũng sai
không tồn tại
người ra đề thử tìm hộ tôi một số a cụ thể nào thỏa mãn đề bài xem nào?
sau đó mới nâng cấp lên tổng quát.
Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9
#ngonhuminh nói đúng đó