Những câu hỏi liên quan
NT
Xem chi tiết
LA
Xem chi tiết
NP
Xem chi tiết
CQ
19 tháng 7 2017 lúc 9:44

a, áp dụng định lý pytago  đối  với tam giá vuông abc tao có                                      mk chỉ làm dc phân a thôi phần b vẫn chưa 

 BC2 = AB2 + AC2                                                                                                               nghĩ ra bạn ak

BC2= 62 + 82

BC2=36+64

BC2=100

BC=căn bậc 2 của 100 và bằng 10

Bình luận (0)
CQ
19 tháng 7 2017 lúc 9:50

thank ban nha

Bình luận (0)
H24
Xem chi tiết
XO
4 tháng 9 2020 lúc 17:01

Ta có : A = x(x + 1)(x2 +  x - 4)

= (x2 + x)(x2 + x - 4)

Đặt x2 + x = t

Khi đó A = t(t - 4)

= t2 - 4t = t2 - 4t + 4 - 4 = (t - 2)2 - 4 \(\ge\)-4

 Dấu "=" xảy ra <=> t - 2 = 0

=> t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 + 2x - x - 2 = 0

=> x(x + 2) - (x + 2) = 0

=> (x - 1)(x + 2) = 0

=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy Min A = -4 <=> x \(\in\left\{1;-2\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
4 tháng 9 2020 lúc 17:08

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A <=> t( t - 4 )

      = t2 - 4t

      = ( t2 - 4t + 4 ) - 4

      = ( t - 2 )2 - 4 

      = ( x2 + x - 2 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra <=> x2 + x - 2 = 0

                             <=> x2 - x + 2x - 2 = 0

                             <=> x( x - 1 ) + 2( x - 1 ) = 0

                             <=> ( x - 1 )( x + 2 ) = 0

                             <=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

=> MinA = -4 <=> x = 1 hoặc x = -2

Bình luận (0)
 Khách vãng lai đã xóa
H24
4 tháng 9 2020 lúc 17:08

a,\(A=x\left(x+1\right)\left(x^2+x-4\right)\)

\(=\left(x^2+x\right)\left(x^2+x-4\right)\)

Đặt \(x^2+x=t\)ta có:

\(A=t\left(t-4\right)\)

\(=t^2-4t\)

\(=\left(t^2-4t+4\right)-4\)

\(=\left(t-2\right)^2-4\ge-4\forall t\)

Dấu "="xảy ra khi \(\left(t-2\right)^2=0\Rightarrow t=2\)

\(\Rightarrow Min_A=-4\Leftrightarrow t=2\)

\(\Leftrightarrow x^2+x=2\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow x=1;x=2\)

b,\(B=-x^2-y^2+xy+2x+2y\)

\(\Leftrightarrow-2B=2x^2+2y^2-2xy-4x-4y\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)-8\)

\(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2-8\ge-8\Leftrightarrow B\le4\)

Dấu"="xảy ra khi \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow x=y=2}\)

Vậy \(Max_B=4\Leftrightarrow x=y=2\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NK
14 tháng 2 2022 lúc 20:17

chào bn mik đến từ năm 2022

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
H24
Xem chi tiết
LK
15 tháng 10 2017 lúc 13:21

Bn ơi câu số 2 yêu cầu làm gì vậy

Bình luận (0)
H24
Xem chi tiết
SE
Xem chi tiết