Chứng tỏ: 1/2x2 +1/3x3 +1/4x4 +....+1/2015x2015 < 1
1/2x2/3x3/4x4/5x5/6x...x2013/2014x2014/2015x2015/2016
1. Chứng tỏ S=1/2x2+1/3x3+1/4x4+...+1/2015x2015<1
2.Một xe lửa vượt qua cái cầu dài 450m hết 45 giây. Vượt qua 1 cột điện hết 15 giây . Tìm chiều dài xe lửa.
3. Một tường hợp có 800 hs. Chứng tỏ rằng phải có ít nhất 3 em có cùng ngày sinh
Cho tổng A =1/2x2 1/3x3 1/4x4 ... 1/2021x2021. Chứng tỏ A <3/4
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2021.2021}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2021^2}\)
Xét : \(\frac{1}{k^2}\left(k\inℕ^∗\right)\)
\(=\frac{4}{4k^2}< \frac{4}{4k^2-1}=\frac{4}{\left(2k-1\right)\left(2k+1\right)}==2\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)\)
Áp dụng cho biểu thức A,ta có :
\(A< 2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{4041}-\frac{1}{4023}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{4023}\right)=\frac{2}{3}-\frac{2}{4023}< \frac{2}{3}< \frac{3}{4}\)
Yuriko
Cách này khó hiểu quá
Cho tổng : A=1/2x2+1/3x3+1/4x4+...+1/100x100. Chứng tỏ A<25/26
A= \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)
=> A= \(\frac{99}{100}>\frac{25}{26}\)
Cho tổng A = 1/2x2 + 1/ 3x3 + 1/4x4 + ... + 1/ 100x100. Chứng tỏ rằng A < 25/36
A=1/2x2+1/3x3+1/4x4+.....+1/9x9
Chứng tỏ rằng 8/9>A>2/5
giúp mình nha
Ta có : A = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)
\(\Rightarrow A< \frac{8}{9}\)(1)
Lại có : \(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow A>\frac{2}{5}\)(2)
Từ (1);(2) => \(\frac{8}{9}>A>\frac{2}{5}\)
cảm ơn nha. bài này mình đang cần gấp nè
Chứng tỏ rằng
B=\(\frac{1}{2x2}+\frac{1}{3x3}+\frac{1}{4x4}+\frac{1}{5x5}+\frac{1}{6x6}+\frac{1}{7x7}+\frac{1}{8x8}< 1\)
Ta thấy:
1/2*2<1/1*2)vì 2*2>1*2).
1/3*3<1/2*3(vì 3*3>2*3).
...
1/8*8<1/7*8(vì 8*8>7*8).
=>1/2*2+1/3*3+1/4*4+...+1/8*8<1/1*2+1/2*3+1/3*4+...+1/7*8.
=>B<1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8.
=>B<1-1/8.
=>B<7/8.
Mà 7/8<1.
=>B<1.
Vậy B<1(đpcm).
\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(\Rightarrow1-\frac{1}{8}< 1\)
=>B<1
\(B=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6.}+\frac{1}{7.7}+\frac{1}{8.8}\)\(=\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(B=1-\frac{1}{8}\)
\(\Rightarrow B< 1\left(ĐPCM\right)\)
Chứng minh:
C=\(\dfrac{1}{2x2}\)+\(\dfrac{1}{3x3}\)+\(\dfrac{1}{4x4}\)+.....+\(\dfrac{1}{100x100}\)<1
\(C=\dfrac{1}{2\times2}+\dfrac{1}{3\times3}+\dfrac{1}{4\times4}+...+\dfrac{1}{100\times100}\\ C< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{99\times100}\\ C< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ C< 1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)
so sánh\(\frac{1}{2x2}\)+ \(\frac{1}{3x3}\)+\(\frac{1}{4x4}\)+ .....+\(\frac{1}{2015x2015}\)với \(\frac{3}{4}\)mà không dùng máy tính
ai có cả cách giải mình cho 3 kick nhé
mình cần gấp
\(A>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(A>\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2015-2014}{2014.2015}\)
\(A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(A>1-\frac{1}{2015}\)
Mà \(\frac{1}{2015}< \frac{1}{4}\Rightarrow1-\frac{1}{2015}>1-\frac{1}{4}=\frac{3}{4}\Rightarrow A>\frac{3}{4}\)