Những câu hỏi liên quan
AH
Xem chi tiết
HG
9 tháng 8 2015 lúc 13:19

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{2001}:2=\frac{1999}{4002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}=\frac{1}{2001}\)

=> x + 1 = 2001

=> x = 2001 - 1

=> x = 2000

Bình luận (0)
TT
9 tháng 8 2015 lúc 13:19

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

   \(\frac{1}{6}+\frac{1}{12}+..+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}:\frac{1}{2}\)

  \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)

  \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

      \(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}\)

    \(\frac{1}{x+1}=\frac{1}{2001}\)

=> x + 1 = 2001

=> x =    2001 - 1

=> x = 2000 

Bình luận (0)
DA
Xem chi tiết
TT
9 tháng 8 2015 lúc 8:45

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}:2\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{x+1-2}{2\left(x+1\right)}=\frac{1999}{4002}\Rightarrow\frac{x-1}{2\left(x+1\right)}=\frac{1999}{4002}\Leftrightarrow4002\left(x-1\right)=1999.2\left(x+1\right)\)

=> 4002x - 4002 = 3998x + 3998

=> 4002x - 3998x = 3998 + 4002

=> 4x               = 8000

=> x                  = 2000

Bình luận (0)
NT
24 tháng 3 2018 lúc 19:38

!/3+1/6+1/10+...+2/x(x+1)=1999/2001

1/6+1/12+1/20+...+2/x(x+1)=1999/2001

2(1/6+1/12+1/20+...+1/x(x+1)=1999/2001

1/6+1/12+1/20+1/x(x+1)=1999/2001:2

1/6+1/12+1/20+...+1/x(x+1)=1999/4002

1/2x3+1/3x4+1/4x5+...+1/x(x+1)=1999/4002

1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=1999/4002

1/2-1/x+1=1999/4002

1/x+1=1/2-1999/4002

1/x+1=1/2001

=>x+1=2001

=>x=2001-1

=x=2000

Vậy x=2000.

Bình luận (0)
TM
5 tháng 4 2018 lúc 5:44

làm thế nào để ra 2/6 và 2/12 vậy

Bình luận (0)
TN
Xem chi tiết
TH
Xem chi tiết
PH
Xem chi tiết
NK
Xem chi tiết
NP
19 tháng 12 2017 lúc 20:13

(*) <=> 1\6 + 1\12 +.. + 1\x.(x+1) = 2009\(2011.2) 
ma 
1\2.3 =1\2-1\3 
1\3.4=1\3-1\4 
............... 
1\x(x+1)= 1\x-1\(x+1) 

cong tung ve ta dc 

Vt= 1\2- 1\(x+1) =2009\(2.2011) 

<=> 2011\(2.2011) -2009\(2.2011) =1\(x+1) 

<=> 1\2011 =1\(x+1) 

=> x=2010

Bình luận (0)
TD
19 tháng 12 2017 lúc 20:16

1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 1999/2001

nhân 1/2 vào 2 vế ta được vế trái là :

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2}.\frac{1999}{2001}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}.\frac{1999}{2001}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}.\frac{1999}{2001}\)

\(\frac{x-1}{2.\left(x+1\right)}=\frac{1}{2}.\frac{1999}{2001}\)

\(\frac{x-1}{\left(x+1\right)}=\frac{1999}{2001}\)

suy ra : 2001x - 2001 = 1999x + 1999

2x = 1999 + 2001 = 4000

=> x = 2000

Bình luận (0)
QD
Xem chi tiết
PQ
28 tháng 8 2015 lúc 16:11

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{2001}:2\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}:2=\frac{1}{2001}\Rightarrow x+1=2001\Rightarrow x=2000\)

Bình luận (0)
H24
17 tháng 2 2018 lúc 15:51

000000000000000000000000000

Bình luận (0)
TN
15 tháng 4 2018 lúc 9:13

bang 2000

hihi...sai do

Bình luận (0)
H24
Xem chi tiết
DD
1 tháng 4 2015 lúc 15:10

= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1) = 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]

=2[1/2-1/(x+1)]= (x-1)/(x+1) = 2001/2003

==> x=2002

Bình luận (0)
DK
17 tháng 4 2020 lúc 9:59

x=2002

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết