a) Tìm x biết:
\(\left(x-\frac{2}{5}\right).\left(x+\frac{3}{7}\right)
Tìm x, biết:
a)\(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x-9\right|=5\)
b)\(\left|\frac{11}{5}-x\right|+\left|x+\frac{1}{5}\right|+\frac{41}{5}=1,2\)
c)\(2\left|x+\frac{7}{2}\right|+\left|x\right|-\frac{7}{2}=\left|\frac{11}{5}-x\right|\)
Tìm x, biết:
a)\(\left(x+5\right).\left(x+9\right)>0\)
b)\(\left(\frac{1}{7}x-\frac{2}{7}\right).\left(-\frac{1}{5}x+\frac{3}{5}\right).\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
bạn ơi trả lời được câu này kông
( x + 1 ) + ( x - 3 ) + ( x + 5 ) + ............ + ( x +9) = 35
Bài 1 : Tìm x biết :
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
b, \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
c,\(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
Bài 2 : Tìm x biết :
a, | 2x - 5 | = x +1
b, | 3x - 2 | -1 = x
c, | 3x - 7 | = 2x + 1
d, | 2x-1 | +1 = x
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
Tìm x biết: \(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
Ta có: \(\frac{3}{\left(x+2\right)\left(x+5\right)}=\frac{1}{x+2}-\frac{1}{x+5}\); \(\frac{5}{\left(x+5\right)\left(x+10\right)}=\frac{1}{x+5}-\frac{1}{x+10}\)
\(\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{1}{x+10}-\frac{1}{x+17}\);
=> Phương trình tương đương:
\(\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)<=> \(\frac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
<=> \(\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
=> x=15
Đáp số: x=15
Tìm x biết:
a)\(\frac{2}{3}.\left(x-\frac{3}{8}\right)-x-\left(-\frac{7}{8}+\frac{2}{3}\right)=\left(\frac{-3}{4}\right)^3:1\frac{11}{16}\)
b)\(-\frac{7}{8}+\frac{7}{8}:\left(\frac{2}{3}-x\right)+\frac{5}{6}:\left(-1\frac{11}{35}\right)=\left(0,8\right)^2\)
tìm x biết:
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}\)\(+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
B)\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{5}{2}\)
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
B) \(\frac{\left(x-4\right)-\left(x-7\right)}{\left(x-7\right)\left(x-4\right)}+\frac{\left(x-7\right)-\left(x-13\right)}{\left(x-13\right)\left(x-7\right)}+\frac{\left(x-13\right)-\left(x-28\right)}{\left(x-28\right)\left(x-13\right)}\)
\(=\frac{1}{x-7}-\frac{1}{x-4}+\frac{1}{x-13}-\frac{1}{x-7}+\frac{1}{x-28}-\frac{1}{x-13}\)
\(=\frac{1}{x-28}-\frac{1}{x-4}=-\frac{5}{2}+\frac{1}{x-28}\)
\(\Leftrightarrow\frac{1}{x-28}-\frac{1}{x-4}-\frac{1}{x-28}=-\frac{5}{2}\)
\(\Leftrightarrow\frac{1}{x-4}=\frac{5}{2}\)
=> 5x - 20 = 2
=> 5x = 22
\(\Rightarrow x=\frac{22}{5}=4,4\)
Vậy, x = 4,4
Tìm x biết:
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
=> \(\frac{\left(x+5\right)-\left(x+3\right)}{\left(x+2\right)\left(x+5\right)}+\frac{\left(x+10\right)-\left(x+5\right)}{\left(x+5\right)\left(x+10\right)}+\frac{\left(x+17\right)-\left(x+10\right)}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
=> \(\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
=> \(\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\) => \(\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\) => x = 15
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+2\right)}{\left(x+2\right)\left(x+5\right)}+\frac{\left(x+10\right)-\left(x+5\right)}{\left(x+5\right)\left(x+10\right)}+\frac{\left(x+17\right)-\left(x+10\right)}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow x=15\)
\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Tìm x biết:
\(\frac{3}{\left(x+2\right)\cdot\left(x+5\right)}+\frac{5}{\left(x+5\right)\cdot\left(x+10\right)}+\frac{7}{\left(x+10\right)\cdot\left(x+17\right)}=\frac{x}{\left(x+2\right)\cdot\left(x+17\right)}\)
Theo đề ta có :
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+2\right)}{\left(x+2\right)\left(x+5\right)}+\frac{\left(x+10\right)-\left(x+5\right)}{\left(x+5\right)\left(x+10\right)}+\frac{\left(x+17\right)-\left(x+10\right)}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{\left(x+17\right)-\left(x+2\right)}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\left(x+17\right)-\left(x+2\right)=x\)
\(\Rightarrow x=15\)
Tìm x biết : \(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(\frac{-1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
Tích các thừa số là 0 chứng tỏ có ít nhất một tổng có kết quả là 0
Xét 1/7x - 2/7 = 0
=> 1/7 . x = 2/7
x = 2
Xét -1/5x + 3/5 = 0
=> -1/5 . x = -3/5
x = 3
Xét 1/3x + 4/3 = 0
=> 1/3x = -4/3
x = -4
TÌM x BIẾT:
a,\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
với x\(\notin\){-2;-5;-10;-17}
b,\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
với x\(\notin\){1;3;8;20}
c, TÌM X BIẾT:
\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
GIÚP MÌNH CHÚT NHA MÌNH CẦN NGAY. THANKS!